首页> 外文期刊>Computer speech and language >Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models
【24h】

Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models

机译:基于i向量,神经网络和隐马尔可夫模型的文本相关说话人验证

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the success of Deep Neural Networks (DNN) in text-independent speaker recognition, we have recently demonstrated that similar ideas can also be applied to the text-dependent speaker verification task. In this paper, we describe new advances with our state-of-the-art i-vector based approach to text-dependent speaker verification, which also makes use of different DNN techniques. In order to collect sufficient statistics for i-vector extraction, different frame alignment models are compared such as GMMs, phonemic HMMs or DNNs trained for senone classification. We also experiment with DNN based bottleneck features and their combinations with standard MFCC features. We experiment with few different DNN configurations and investigate the importance of training DNNs on 16 kHz speech. The results are reported on RSR2015 dataset, where training material is available for all possible enrollment and test phrases. Additionally, we report results also on more challenging RedDots dataset, where the system is built in truly phrase-independent way.
机译:受到深度神经网络(DNN)在与文本无关的说话人识别方面的成功的启发,我们最近证明了类似的想法也可以应用于与文本无关的说话人验证任务。在本文中,我们描述了基于基于文本向量的说话人验证的最新i-vector方法的最新进展,该方法还利用了不同的DNN技术。为了收集足够的统计信息以进行i向量提取,比较了不同的帧对齐模型,例如GMM,音素HMM或针对senone分类训练的DNN。我们还尝试了基于DNN的瓶颈功能及其与标准MFCC功能的组合。我们尝试了几种不同的DNN配置,并研究了在16 kHz语音上训练DNN的重要性。结果在RSR2015数据集上报告,该数据集提供了所有可能的入学和测试短语的培训材料。此外,我们还报告更具挑战性的RedDots数据集的结果,该系统以真正与词组无关的方式构建。

著录项

  • 来源
    《Computer speech and language》 |2017年第11期|53-71|共19页
  • 作者单位

    Speech Processing Laboratory, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran,Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Brno, Czech Republic;

    Speech Processing Laboratory, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran;

    Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Brno, Czech Republic;

    Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Brno, Czech Republic;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bottleneck features; Deep Neural Network; Frame alignment; i-Vector; Speaker verification; Text-dependent;

    机译:瓶颈特征;深度神经网络框架对齐;i-Vector;说话者验证;文字相关;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号