首页> 外文期刊>Computer speech and language >Constructing a Natural Language Inference dataset using generative neural networks
【24h】

Constructing a Natural Language Inference dataset using generative neural networks

机译:使用生成神经网络构建自然语言推理数据集

获取原文
获取原文并翻译 | 示例

摘要

Natural Language Inference is an important task for Natural Language Understanding. It is concerned with classifying the logical relation between two sentences. In this paper, we propose several text generative neural networks for generating text hypothesis, which allows construction of new Natural Language Inference datasets. To evaluate the models, we propose a new metric—the accuracy of the classifier trained on the generated dataset. The accuracy obtained by our best generative model is only 2.7% lower than the accuracy of the classifier trained on the original, human crafted dataset. Furthermore, the best generated dataset combined with the original dataset achieves the highest accuracy. The best model learns a mapping embedding for each training example. By comparing various metrics we show that datasets that obtain higher ROUGE or METEOR scores do not necessarily yield higher classification accuracies. We also provide analysis of what are the characteristics of a good dataset including the distinguishability of the generated datasets from the original one.
机译:自然语言推理是自然语言理解的重要任务。它涉及对两个句子之间的逻辑关系进行分类。在本文中,我们提出了几种用于生成文本假设的文本生成神经网络,这些网络可以构建新的自然语言推理数据集。为了评估模型,我们提出了一个新的指标-在生成的数据集上训练的分类器的准确性。通过我们最好的生成模型获得的准确性仅比在原始人为数据集上训练的分类器的准确性低2.7%。此外,最佳生成的数据集与原始数据集相结合可获得最高的准确性。最佳模型学习每个训练示例的映射嵌入。通过比较各种指标,我们显示获得较高ROUGE或METEOR得分的数据集不一定会产生较高的分类精度。我们还提供了优质数据集的特征分析,包括所生成数据集与原始数据集的可区分性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号