首页> 外文期刊>Computer networks >Architecture design and performance analysis of a novel memory system for high-bandwidth onboard switching fabric
【24h】

Architecture design and performance analysis of a novel memory system for high-bandwidth onboard switching fabric

机译:高带宽开关面料新型记忆系统的建筑设计与性能分析

获取原文
获取原文并翻译 | 示例

摘要

The development of the space-air-ground integration has put higher demands on satellite network. It needs to support high-bandwidth, large-capacity and various quality of service guarantees. However, the satellite onboard switching is facing the problem of resource constraints and special requirements of hardware complexity and scheduling efficiency. For this, this paper proposes a novel memory architecture for high-bandwidth onboard switching fabric. To reduce hardware complexity, multiplexer is used in the input side to merge k input ports into one internal bus, while the output demultiplexer splits an internal bus into k output links. Shared memory architecture is adopted in the input module to improve the memory efficiency, and a buffered crossbar is used to interconnect the input modules to the output modules. A discrete-time queuing model is formulated, and an iterative approach is used to quantitatively analyze the performance of the proposed architecture. The throughput and delay are calculated under different switch size, input load, and buffer capacity. The numerical results can serve as a guidance on deciding the required buffer size and appropriate speedup ratio. This work is validated by both simulations and FPGA implementations. Synthesize result show that using the state-of-the-art Xilinx VU13P FPGA, a switching fabric with 48 ports can be implemented and the peak throughput of the proposed architecture can reach 480 Gbps. Compared with existing combined input-crosspoint queuing, the proposed architecture can significantly reduce the packet delay and the memory resource cost.
机译:太空空地集成的发展对卫星网络提出了更高的要求。它需要支持高带宽,大容量和各种服务质量保证。然而,卫星车载切换面临资源限制问题和硬件复杂性和调度效率的特殊要求。为此,本文提出了一种用于高带宽在板上交换结构的新型内存架构。为了减少硬件复杂性,在输入侧使用多路复用器以将k个输入端口合并到一个内部总线中,而输出多路分解器将内部总线分配为K输出链路。输入模块中采用共享内存架构以提高内存效率,并且使用缓冲的横杆来将输入模块互连到输出模块。配制了离散时间排队模型,使用迭代方法来定量分析所提出的架构的性能。吞吐量和延迟在不同的开关尺寸,输入负载和缓冲容量下计算。数值结果可以作为决定所需缓冲区大小和适当的加速比的指导。这两项工作都是通过模拟和FPGA实现验证的。合成结果表明,使用最先进的Xilinx VU13P FPGA,可以实现具有48个端口的开关结构,并且所提出的架构的峰值吞吐量可以达到480 Gbps。与现有的组合输入交叉点排队相比,所提出的架构可以显着降低数据包延迟和存储器资源成本。

著录项

  • 来源
    《Computer networks》 |2021年第24期|108367.1-108367.16|共16页
  • 作者单位

    Xian Univ Posts & Telecommun Sch Commun & Informat Engn Xian 710121 Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Wuxi Inst Technol Sch Internet Things Technol Wuxi 214121 Jiangsu Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Xian Univ Posts & Telecommun Sch Commun & Informat Engn Xian 710121 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Satellite network; Onboard switching; Buffered crossbar; Crosspoint-queued switch; Queuing theory;

    机译:卫星网络;板载切换;缓冲横杆;交叉点排队开关;排队理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号