首页> 外文期刊>Computer networks >Intrusion detection for capsule networks based on dual routing mechanism
【24h】

Intrusion detection for capsule networks based on dual routing mechanism

机译:基于双路由机制的胶囊网络入侵检测

获取原文
获取原文并翻译 | 示例

摘要

The combination of deep learning and intrusion detection has become a hot topic in today's information security. In today's risky network environment, the ability to accurately detect anomalous data is an important task for intrusion detection. In an intrusion detection system, each piece of data contains multiple features. However, not every feature will determine the nature of the data, on the contrary, too many features will affect the model's judgment. In this paper, we propose an intrusion detection model of a deep capsule network based on an attention mechanism. The model uses a deep capsule network to enhance the extraction of features, and the attention mechanism is carried out to make the model focus on the features with large influences. The features are captured in multiple directions by a double routing algorithm and two strategies are adopted to stabilize the dynamic routing process. Finally, experiments are conducted on the intrusion detection dataset with good results.
机译:深度学习和入侵检测的结合已成为当今信息安全的热门话题。 在当今的风险网络环境中,准确检测异常数据的能力是入侵检测的重要任务。 在入侵检测系统中,每条数据包含多个功能。 但是,并非每个功能都将决定数据的性质,相反,太多功能会影响模型的判断。 在本文中,我们提出了一种基于注意机制的深胶囊网络的入侵检测模型。 该模型使用深胶囊网络来增强特征的提取,并进行关注机制,以使模型专注于具有大量影响的特征。 通过双路由算法在多个方向上捕获特征,采用两种策略来稳定动态路由过程。 最后,实验在入侵检测数据集上进行了良好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号