首页> 外文期刊>Computer networks >Generative Adversarial Networks (GANs) in networking: A comprehensive survey & evaluation
【24h】

Generative Adversarial Networks (GANs) in networking: A comprehensive survey & evaluation

机译:网络中的生成对抗网络(GANS):全面的调查与评估

获取原文
获取原文并翻译 | 示例

摘要

Despite the recency of their conception, Generative Adversarial Networks (GANs) constitute an extensively researched machine learning sub-field for the creation of synthetic data through deep generative modeling. GANs have consequently been applied in a number of domains, most notably computer vision, in which they are typically used to generate or transform synthetic images. Given their relative ease of use, it is therefore natural that researchers in the field of networking (which has seen extensive application of deep learning methods) should take an interest in GAN-based approaches. The need for a comprehensive survey of such activity is therefore urgent. In this paper, we demonstrate how this branch of machine learning can benefit multiple aspects of computer and communication networks, including mobile networks, network analysis, internet of things, physical layer, and cybersecurity. In doing so, we shall provide a novel evaluation framework for comparing the performance of different models in non-image applications, applying this to a number of reference network datasets.
机译:尽管他们的概念的内容,生成的对抗性网络(GANS)构成了一个广泛研究的机器学习子领域,用于通过深度生成建模创建合成数据。因此,GANS已经应用于许多域,最典型的计算机视觉,其中它们通常用于生成或转换合成图像。鉴于他们的相对易用性,因此自然的是网络领域的研究人员(已经看到深受深层学习方法的广泛应用)应该对基于GaN的方法感兴趣。因此,需要对这种活动进行全面调查。在本文中,我们展示了该机器学习的该分支如何利用计算机和通信网络的多个方面,包括移动网络,网络分析,事物互联网,物理层和网络安全。在此过程中,我们将提供一种新的评估框架,用于比较非图像应用中不同模型的性能,将此应用于许多参考网络数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号