首页> 外文期刊>Computer networks >Realtime mobile bandwidth prediction using LSTM neural network and Bayesian fusion
【24h】

Realtime mobile bandwidth prediction using LSTM neural network and Bayesian fusion

机译:使用LSTM神经网络和贝叶斯融合的实时移动带宽预测

获取原文
获取原文并翻译 | 示例

摘要

With the increasing popularity of mobile Internet and the higher bandwidth requirement of mobile applications, user Quality of Experience (QoE) is particularly important. For applications requiring high bandwidth and low delay, such as video streaming, video conferencing, and online gaming, etc., if the future bandwidth can be estimated in advance, applications can leverage the estimation to adjust their data transmission strategies and significantly improve the user QoE. In this paper, we focus on accurate bandwidth prediction to improve user QoE. Specifically, We study realtime mobile bandwidth prediction in various mobile networking scenarios, such as subway and bus rides along different routes. The primary method used is Long Short Term Memory (LSTM) recurrent neural network. In individual scenarios, LSTM significantly improves the prediction accuracy of state-of-the-art prediction algorithms, such as Recursive Least Squares (RLS) by 12% in Root Mean Square Error (RMSE) and by 17% in Mean Average Error (MAE). We further developed Multi-Scale Entropy (MSE) to analyze the bandwidth patterns in different mobility scenarios and discuss its connection to the achieved accuracy. For practical applications, we developed Model Switching and Bayes Model Fusion to use pre-trained LSTM models for online realtime bandwidth prediction.
机译:随着移动互联网的普及以及移动应用的较高带宽要求,用户体验质量(QoE)尤为重要。对于需要高带宽和低延迟的应用程序,例如视频流,视频会议和在线游戏等,如果可以提前估算未来带宽,则应用程序可以利用估计来调整其数据传输策略并显着改善用户qoe。在本文中,我们专注于准确的带宽预测来改善用户QoE。具体而言,我们研究各种移动网络方案中的实时移动带宽预测,例如沿着不同路线的地铁和总线乘坐。使用的主要方法是长期内存(LSTM)复发性神经网络。在各个情况下,LSTM显着提高了最先进的预测算法的预测精度,例如递归最小二乘(RLS)在均线方误差(RMSE)中递归12%,平均误差为17%(MAE )。我们进一步开发了多尺度熵(MSE)来分析不同移动性方案中的带宽模式,并讨论其与实现的准确性的连接。对于实际应用,我们开发了模型交换和贝叶斯模型融合,用于使用预先训练的LSTM模型进行在线实时带宽预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号