首页> 外文期刊>Computer networks >SmartFCT: Improving power-efficiency for data center networks with deep reinforcement learning
【24h】

SmartFCT: Improving power-efficiency for data center networks with deep reinforcement learning

机译:SMARTFCT:提高具有深度增强学习的数据中心网络的功率效率

获取原文
获取原文并翻译 | 示例

摘要

Reducing the power consumption of Data Center Networks (DCNs) and guaranteeing the Flow Completion Time (FCT) of applications in DCNs are two major concerns for data center operators. However, existing works cannot realize the two goals together because of two issues: (1) dynamic traffic pattern in DCNs is hard to accurately model; (2) an optimal flow scheduling scheme is computationally expensive.In this paper, we propose SmartFCT, which employs the Deep Reinforcement Learning (DRL) coupled with Software-Defined Networking (SDN) to improve the power efficiency of DCNs and guarantee FCT. SmartFCT dynamically collects traffic distribution from switches to train its DRL model. The well-trained DRL agent of SmartFCT can quickly analyze the complicated traffic characteristics using neural networks and adaptively generate a action for scheduling flows and deliberately configuring margins for different links. Following the generated action, flows are consolidated into a few of active links and switches for saving power, and fine-grained margin configuration for active links avoids FCT violation of unexpected flow bursts. Simulation results show that SmartFCT can guarantee FCT and save up to 12.2% power consumption, compared with the state-of-the-art solutions.
机译:降低数据中心网络(DCN)的功耗并保证DCN中应用程序的流程完成时间(FCT)是数据中心运算符的两个主要问题。但是,由于两个问题,现有工程不能实现两个目标:(1)DCN中的动态流量模式很难准确模型; (2)最佳流量调度方案是计算昂贵的。本文提出了SmartFCT,它采用了与软件定义的网络(SDN)耦合的深增强学习(DRL)来提高DCNS的功率效率和保证FCT。 SMARTFCT动态收集来自交换机的流量分布以培训其DRL模型。训练有素的SmartFCT的DRL代理可以快速分析使用神经网络的复杂的流量特征,并自适应地生成用于调度流的动作,并故意为不同的链接配置利润率。在生成的动作之后,流量被整合到一些活动链路和切换中,用于节省电量,以及用于活动链接的细粒度边缘配置避免了FCT违反意外流突发。仿真结果表明,与最先进的解决方案相比,SmartFCT可以保证FCT并节省高达12.2%的功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号