首页> 外文期刊>Journal of network and computer applications >DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined data-center networks
【24h】

DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined data-center networks

机译:DRL-R:软件定义数据中心网络中智能路由的深度加强学习方法

获取原文
获取原文并翻译 | 示例
           

摘要

Data-center networks (DCN) possess multiple new features: coexistence of elephant flow/mice flow/coflow, and coexistence of multiple network resources (bandwidth, cache and computing). The cache should be a factor of effecting routing decision because it can eliminate redundant traffic in DCN. However, the conventional routing schemes cannot learn from their previous experiences regarding network abnormalities (such as, congestion), and their metric are still the single link state (such as, hop, distance, and cost) which does not include the effect of cache. Thus, they cannot enough efficiently allocate these resources to well meet the performance requirements for various flow types. Therefore, this paper proposes deep reinforcement learning-based routing (DRL-R). Firstly, we propose a method that recombines multiple network resources with different metrics, where we recombine cache and bandwidth by quantifying their contribution score in reducing the delay. Secondly, we propose a routing scheme with resource-recombined state. By optimally allocating network resources for traffic, a DRL agent deployed on a software-defined networking (SDN) controller continually interacts with the network to adaptively perform reasonable routing according to the network state. We employ deep Q-network (DQN) and deep deterministic policy gradient (DDPG) to build the DRL-R. Finally, we demonstrate the effectiveness of DRLR through extensive simulations. Benefitting from continuous learning with a global view, DRL-R has lower flow completion time, higher throughput and better load balance as well as better robustness, compared to OSPF. In addition, because it efficiently utilizes the network resources, DRL-R can also outperform another DRL-based routing scheme (namely TIDE). Compared to OSPF and TIDE, respectively, DRL-R can improve throughput by up to 40% and 18.5%; DRL-R can reduce flow completion time by up to 47% and 39%; DRL-R can improve the link load balance by up to 18.8% and 9.3%. Additionally, we observed that DDPG has better performance than DQN.
机译:数据中心网络(DCN)具有多个新功能:Elephant流/小鼠流/ Coflow的共存,以及多个网络资源的共存(带宽,缓存和计算)。缓存应该是影响路由决策的因素,因为它可以消除DCN中的冗余流量。但是,传统的路由方案无法从他们以前关于网络异常的经验(例如,拥塞)的经验中学习,并且它们的度量仍然是不包括缓存效果的单链路状态(例如跳,距离和成本) 。因此,它们无法有效地分配这些资源,并符合各种流类型的性能要求。因此,本文提出了基于深度的基于钢筋的路由(DRL-R)。首先,我们提出了一种方法,该方法通过不同的指标重组多个网络资源,在那里通过量化它们在减少延迟时重新组合缓存和带宽。其次,我们提出了一种带资源重组状态的路由方案。通过最佳地分配用于流量的网络资源,部署在软件定义的网络(SDN)控制器上的DRL代理与网络不断交互,以根据网络状态自适应地执行合理的路由。我们使用深度Q-Network(DQN)和深度确定性政策梯度(DDPG)来构建DRL-R。最后,我们展示了DRLR通过广泛的模拟的有效性。与全球视图的连续学习受益,与OSPF相比,DRL-R具有较低的流程完成时间,更高的吞吐量和更好的负载平衡以及更好的稳健性。另外,由于它有效利用网络资源,因此DRL-R也可以优于基于DRL的路由方案(即潮汐)。与OSPF和潮汐相比,DRL-R可以提高吞吐量高达40%和18.5%; DRL-R可以将流量完成时间降低至47%和39%; DRL-R可以将链接负载均衡提高18.8%和9.3%。此外,我们观察到DDPG的性能比DQN更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号