首页> 外文期刊>Computer networks >An industrial missing values processing method based on generating model
【24h】

An industrial missing values processing method based on generating model

机译:基于生成模型的工业缺失值处理方法

获取原文
获取原文并翻译 | 示例

摘要

The issue of missing values (MVs) has been found widely in real-world datasets and obstructed the use of many statistical or machine learning algorithms for data analytics due to their incompetence in processing incomplete datasets. Most of the current MVs filling methods are applied to the datasets with certain specific types or low missing rate. This paper proposes a method of missing values processing based on the combination of denoising autoencoder (DAE) and generative adversarial networks (GAN), aiming at the missing completely at random (MCAR) datasets with high missing rate and noise interference in industrial scenes. We execute the training process on a discrete dataset with missing values, in order to ensure the generated dataset is completely similar to the feature distribution of the original dataset. We conduct our experiments for different dimensional datasets to prove the feasibility and efficiency of this method, including three public authority datasets and an industrial production monitoring dataset. The results compared with traditional missing values imputation methods have shown when the missing rate is higher than 30%, our method performs better in robustness and accuracy. (C) 2019 Published by Elsevier B.V.
机译:缺失值(MVS)的问题已广泛在现实世界数据集中发现,并且由于它们在处理不完整的数据集中的无能而阻碍了使用许多统计或机器学习算法的使用。大多数当前MVS填充方法应用于具有某些特定类型或低缺失率的数据集。本文提出了一种基于去噪AutoEncoder(DAE)和生成的对冲网络(GaN)的组合的缺失值处理的方法,其旨在完全在随机(MCAR)数据集中缺失(MCAR)数据集,具有高缺失率和工业场景中的噪声干扰。我们在具有缺失值的离散数据集上执行培训过程,以确保生成的数据集完全类似于原始数据集的特征分布。我们对不同维数据集进行实验,以证明这种方法的可行性和效率,包括三个公共权力数据集和工业生产监控数据集。结果与传统缺失值相比,丢失率丢失的方法显示出缺失率高于30%时,我们的方法以鲁棒性和准确性更好地执行。 (c)2019年由elestvier b.v发布。

著录项

  • 来源
    《Computer networks》 |2019年第jul20期|61-68|共8页
  • 作者单位

    Univ Sci & Technol Beijing Sch Civil & Environm Engn Beijing 100083 Peoples R China|Anshan Iron & Steel Grp Corp Anshan Peoples R China;

    Univ Sci & Technol Beijing Sch Civil & Environm Engn Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Sch Civil & Environm Engn Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Sch Civil & Environm Engn Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Sch Civil & Environm Engn Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DAE; GAN; Generating model; IIOT; MCAR; Missing values;

    机译:DAE;GAN;生成模型;IIOT;MCAR;缺少值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号