首页> 外文期刊>Computer networks >An industrial missing values processing method based on generating model
【24h】

An industrial missing values processing method based on generating model

机译:基于生成模型的工业缺失值处理方法

获取原文
获取原文并翻译 | 示例

摘要

The issue of missing values (MVs) has been found widely in real-world datasets and obstructed the use of many statistical or machine learning algorithms for data analytics due to their incompetence in processing incomplete datasets. Most of the current MVs filling methods are applied to the datasets with certain specific types or low missing rate. This paper proposes a method of missing values processing based on the combination of denoising autoencoder (DAE) and generative adversarial networks (GAN), aiming at the missing completely at random (MCAR) datasets with high missing rate and noise interference in industrial scenes. We execute the training process on a discrete dataset with missing values, in order to ensure the generated dataset is completely similar to the feature distribution of the original dataset. We conduct our experiments for different dimensional datasets to prove the feasibility and efficiency of this method, including three public authority datasets and an industrial production monitoring dataset. The results compared with traditional missing values imputation methods have shown when the missing rate is higher than 30%, our method performs better in robustness and accuracy. (C) 2019 Published by Elsevier B.V.
机译:缺失值(MV)的问题已在现实世界的数据集中广泛发现,由于它们无法处理不完整的数据集,因此阻碍了许多统计或机器学习算法用于数据分析。当前大多数MV填充方法已应用于具有某些特定类型或缺失率较低的数据集。本文提出了一种基于去噪自动编码器(DAE)和生成对抗网络(GAN)相结合的缺失值处理方法,旨在针对工业场景中具有较高缺失率和噪声干扰的完全随机(MCAR)数据集。我们对缺少值的离散数据集执行训练过程,以确保生成的数据集与原始数据集的特征分布完全相似。我们对不同维度的数据集进行了实验,以证明该方法的可行性和有效性,其中包括三个公共机构数据集和一个工业生产监控数据集。与传统的缺失值插补方法相比,结果表明,当缺失率高于30%时,我们的方法在鲁棒性和准确性上表现更好。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Computer networks》 |2019年第20期|61-68|共8页
  • 作者单位

    Univ Sci & Technol Beijing, Sch Civil & Environm Engn, Beijing 100083, Peoples R China|Anshan Iron & Steel Grp Corp, Anshan, Peoples R China;

    Univ Sci & Technol Beijing, Sch Civil & Environm Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Civil & Environm Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Civil & Environm Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Civil & Environm Engn, Beijing 100083, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DAE; GAN; Generating model; IIOT; MCAR; Missing values;

    机译:DAE;GAN;生成模型;IIOT;MCAR;缺失值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号