首页> 外文期刊>Computer networks >ACoPE: An adaptive semi-supervised learning approach for complex-policy enforcement in high-bandwidth networks
【24h】

ACoPE: An adaptive semi-supervised learning approach for complex-policy enforcement in high-bandwidth networks

机译:ACoPE:自适应半监督学习方法,用于高带宽网络中的复杂策略实施

获取原文
获取原文并翻译 | 示例

摘要

Today's high-bandwidth networks require adaptive analyzing approaches to recognize the network variable behaviors. The analyzing approaches should be robust against the tack of prior knowledge and provide data to impose more complex policies. In this paper, ACoPE is proposed as an adaptive semi-supervised learning approach for complex-policy enforcement in high-bandwidth networks. ACoPE detects and maintains inter-flows relationships to impose complex-policies. It employs a statistical process control technique to monitor accuracy. Whenever the accuracy decreased, ACoPE considers it as a changed behavior and uses data from a deep packet inspection module to adapt itself with the change.The performance of ACoPE in analyzing network traffic is evaluated through UNB ISCX VPN-nonVPN and UNB ISCX Tor-nonTor datasets. The performance is compared with 10 different stream and traditional classification algorithms. ACoPE outperforms the stream classifiers, with 95.92% accuracy, 86.21% precision, and 73.29% recall in VPN dataset, and with 81.12% accuracy, 73.59% precision, and 61.08% recall in Tor dataset. The effectiveness of ACoPE to address the main constraints in analyzing of high-bandwidth networks to enforce security policies, namely comprehensive processing and adaptive learning, are confirmed through three different scenarios. Efficiency and accuracy of ACoPE in real high-bandwidth networks are evaluated by a pilot study, which indicates its efficiency and accuracy in analyzing high-bandwidth networks. (C) 2019 Elsevier B.V. All rights reserved.
机译:当今的高带宽网络需要自适应分析方法来识别网络变量行为。分析方法应针对先验知识的鲁棒性,并提供数据以实施更复杂的策略。在本文中,ACoPE被提出作为一种自适应的半监督学习方法,用于高带宽网络中的复杂策略执行。 ACoPE检测并维护流之间的关系以施加复杂策略。它采用统计过程控制技术来监视准确性。每当准确性下降时,ACoPE都会将其视为已更改的行为,并使用来自深度数据包检查模块的数据来适应这种更改。ACoPE通过UNB ISCX VPN-nonVPN和UNB ISCX Tor-nonTor评估网络流量的性能数据集。将性能与10种不同的流和传统分类算法进行比较。 ACoPE的性能优于流分类器,在VPN数据集中的准确率分别为95.92%,86.21%和73.29%,在Tor数据集中的准确度为81.12%,73.59%和61.08%。通过三种不同的场景,确认了ACoPE解决高带宽网络分析中实施安全策略的主要限制的有效性,即全面处理和自适应学习。通过试点研究评估了ACoPE在实际高带宽网络中的效率和准确性,这表明了ACoPE在分析高带宽网络中的效率和准确性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号