首页> 外文期刊>Computer networks >Correlation analysis and statistical characterization of heterogeneous sensor data in environmental sensor networks
【24h】

Correlation analysis and statistical characterization of heterogeneous sensor data in environmental sensor networks

机译:环境传感器网络中异构传感器数据的相关性分析和统计表征

获取原文
获取原文并翻译 | 示例

摘要

In wireless sensor networks, missing data is an inevitable phenomenon due to the inherent limitations of the sensor nodes, such as battery power constraints of nodes, missing communication links, bandwidth limitation, etc. Missing data adversely affects the quality of data received by the sink node. Since the data acquired by the sensor nodes in a multimodal environmental sensor network are spatially and temporally correlated, these correlations play a pivotal role in missing data recovery and data prediction. This paper proposes an analytical framework to characterize the correlation between two different pairs of modalities in an environmental sensor network using a set of classical and robust measures of correlation coefficient estimates. Monte Carlo simulation is performed to approximately model sensed environmental data characteristics. Three classical estimates (Pearson's correlation coefficient, Spearman's rank correlation coefficient, and Kendall's-tau rank correlation coefficient), and four robust estimates of correlation coefficients are used to establish the correlation between different pairs of sensed modalities in the data characteristics. The efficacy of these estimates is obtained using the two performance metrics, mean-squared error (MSE) and relative estimation efficiency (RE). Stationarity analysis among the acquired environmental variables shed light upon the best estimates of the correlation coefficient, which could be used for prediction of temperature modality in a known region of slope/stationarity in the data characteristics. The robustness of the correlation coefficient estimates in the presence of outliers present in the data due to noise, errors, low residual battery power of sensor nodes, etc. is also investigated. (C) 2019 Elsevier B.V. All rights reserved.
机译:在无线传感器网络中,由于传感器节点的固有限制(例如节点的电池电量限制,通信链路丢失,带宽限制等),导致数据丢失是不可避免的现象。数据丢失会对接收器接收的数据质量产生不利影响节点。由于由多模式环境传感器网络中的传感器节点获取的数据在空间和时间上相关,因此这些相关在丢失数据恢复和数据预测中起着关键作用。本文提出了一个分析框架,该框架使用一组经典且鲁棒的相关系数估计量来表征环境传感器网络中两种不同模式之间的相关性。进行蒙特卡罗模拟以近似地模拟感测到的环境数据特征。使用三个经典估计(Pearson相关系数,Spearman秩相关系数和Kendall's-tau秩相关系数)和四个相关系数的稳健估计来建立数据特征中不同感知模态对之间的相关性。使用两个性能指标即均方误差(MSE)和相对估计效率(RE)获得这些估计的功效。所获取的环境变量之间的平稳性分析为相关系数的最佳估计提供了依据,该最佳估计值可用于预测数据特征中已知的斜率/平稳性区域中的温度模态。还研究了由于噪声,错误,传感器节点的剩余电池电量低等导致数据中存在异常值时,相关系数估计的鲁棒性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号