首页> 外文期刊>Computer networks >End-to-end quality of service seen by applications: A statistical learning approach
【24h】

End-to-end quality of service seen by applications: A statistical learning approach

机译:应用程序所见的端到端服务质量:一种统计学习方法

获取原文
获取原文并翻译 | 示例

摘要

The focus of this work is on the estimation of quality of service (QoS) parameters seen by an application. Our proposal is based on end-to-end active measurements and statistical learning tools. We propose a methodology where the system is trained during short periods with application flows and probe packets bursts. We learn the relation between QoS parameters seen by the application and the state of the network path, which is inferred from the interarrival times of the probe packets bursts. We obtain a continuous non intrusive QoS monitoring methodology. We propose two different estimators of the network state and analyze them using Nadaraya-Watson estimator and Support Vector Machines (SVM) for regression. We compare these approaches and we show results obtained by simulations and by measures in operational networks.
机译:这项工作的重点是估计应用程序看到的服务质量(QoS)参数。我们的建议基于端到端的主动测量和统计学习工具。我们提出一种方法,在短时间内通过应用程序流和探测数据包突发来训练系统。我们了解了应用程序看到的QoS参数与网络路径状态之间的关系,这是从探测数据包突发的到达时间得出的。我们获得了连续的非侵入式QoS监控方法。我们提出了两种不同的网络状态估算器,并使用Nadaraya-Watson估算器和支持向量机(SVM)进行了回归分析。我们比较了这些方法,并显示了通过仿真和运营网络中的措施获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号