首页> 外文期刊>Computer networks >Blind maximum likelihood estimation of traffic matrices under long-range dependent traffic
【24h】

Blind maximum likelihood estimation of traffic matrices under long-range dependent traffic

机译:远程依赖流量下流量矩阵的盲最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

A new method, based on the maximum likelihood principle, through the numerical Expectation-Maximization algorithm, is proposed to estimate traffic matrices when traffic exhibits long-range dependence. The methods proposed so far in the literature do not account for long-range dependence. The method proposed in the present paper also provides an estimate of the Hurst parameter. Simulation results show that: (ⅰ) the estimate of the traffic matrix is more efficient than those obtained via existing techniques; (ⅱ) the estimation error of the traffic matrix is lower for larger values of the true traffic intensity; (ⅲ) the estimate of the Hurst parameter is slightly negatively biased.
机译:提出了一种基于最大似然原理的数字期望-最大化算法,用于在交通表现出长期依赖时估计交通矩阵。迄今为止,文献中提出的方法并未考虑长期依赖性。本文提出的方法还提供了Hurst参数的估计。仿真结果表明:(ⅰ)流量矩阵的估计比通过现有技术获得的估计更有效; (ⅱ)对于较大的真实交通强度值,交通矩阵的估计误差较低; (ⅲ)赫斯特参数的估计值略有负偏。

著录项

  • 来源
    《Computer networks》 |2010年第15期|p.2626-2639|共14页
  • 作者单位

    Universita di Roma 'La Sapienza', Dipartimento di Statistica, Probabilita e Statistiche Applicate, Piazzale Aldo Moro, Rome, Italy;

    Universita LUMSA, Piazza delle Vaschette 101, 00193 Rome, Italy;

    Universita di Roma 'Tor Vergata', Dipartimento di lnformatka, Sistemi e Produzione, Via del Poiitecnico 1, Rome, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    traffic matrices; long-range dependence; traffic matrix estimation;

    机译:流量矩阵;长期依赖流量矩阵估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号