首页> 外文期刊>Computer networks >Joint VM placement and topology optimization for traffic scalability in dynamic datacenter networks
【24h】

Joint VM placement and topology optimization for traffic scalability in dynamic datacenter networks

机译:联合VM放置和拓扑优化,以实现动态数据中心网络中的流量可扩展性

获取原文
获取原文并翻译 | 示例

摘要

In dynamic datacenter networks (DDNs), there are two ways to handle growing traffic: adjusting the network topology according to the traffic and placing virtual machines (VMs) to change the workload according to the topology. While previous work only focused on one of these two approaches, in this paper, we jointly optimize both virtual machine placement and topology design to achieve higher traffic scalability. We formulate this joint optimization problem to be a mixed integer linear programming (MILP) model and design an efficient heuristic based on Lagrange's relaxation decomposition. To handle traffic dynamics, we introduce an online algorithm that can balance algorithm performance and overhead. Our extensive simulation with various network settings and traffic patterns shows that compared with randomly placing VMs in fixed datacenter networks, our algorithm can reduce up to 58.78% of the traffic in the network, and completely avoid traffic overflow in most cases. Furthermore, our online algorithm greatly reduces network cost without sacrificing too much network stability. (C) 2015 Elsevier B.V. All rights reserved.
机译:在动态数据中心网络(DDN)中,有两种方法来处理不断增长的流量:根据流量调整网络拓扑,并放置虚拟机(VM)以根据拓扑更改工作量。尽管先前的工作仅关注这两种方法之一,但在本文中,我们共同优化了虚拟机布局和拓扑设计,以实现更高的流量可扩展性。我们将此联合优化问题公式化为混合整数线性规划(MILP)模型,并基于Lagrange的弛豫分解设计一种有效的启发式算法。为了处理流量动态,我们引入了一种在线算法,可以平衡算法性能和开销。我们对各种网络设置和流量模式进行的广泛仿真显示,与将VM随机放置在固定数据中心网络中相比,我们的算法最多可以减少58.78%的网络流量,并在大多数情况下完全避免流量溢出。此外,我们的在线算法可在不牺牲太多网络稳定性的情况下大大降低网络成本。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Computer networks》 |2015年第7期|109-123|共15页
  • 作者单位

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 610054, Peoples R China|Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China;

    Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China;

    Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China;

    Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 610054, Peoples R China;

    Natl Univ Def Technol, Sch Comp, Changsha, Hunan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    VM placement; Dynamic datacenter networks; Joint optimization; Lagrange's relaxation decomposition;

    机译:虚拟机布局;动态数据中心网络;联合优化;拉格朗日松弛分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号