首页> 美国卫生研究院文献>PLoS Computational Biology >General Relationship of Global Topology Local Dynamics and Directionality in Large-Scale Brain Networks
【2h】

General Relationship of Global Topology Local Dynamics and Directionality in Large-Scale Brain Networks

机译:大规模脑网络中全局拓扑局部动力学和方向性的一般关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.
机译:全局集成和功能专业化之间的平衡是高效大脑网络的关键特征,但是尚未确定全局拓扑,局部节点动态和跨网络信息流之间的关系。阐明这种关系的一个关键步骤是确定节点之间相互作用的方向性基础的控制原则。在这里,我们通过基于网络中一般振荡器模型的相位超前/滞后关系的解析解决方案来证明这些原理。我们使用通用模型网络和解剖脑网络,以及从有意识和麻醉状态下的人类收集的高密度脑电图,通过计算仿真来确认分析结果。分析,计算和经验结果表明,具有更多连接(即,更高的度数)的网络节点具有更大的幅度,并且是定向目标(相位滞后)而不是源(相位超前)。因此,节点度和方向性的关系似乎是网络的基本属性,直接适用于脑功能。这些结果为原则上了解跨网络的信息传递提供了基础,并且还证明了跨人类意识状态的方向性模式的变化是由大脑网络拓扑结构的变化驱动的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号