首页> 外文期刊>Computer networks >A task scheduling algorithm based on Q-learning and shared value function for WSNs
【24h】

A task scheduling algorithm based on Q-learning and shared value function for WSNs

机译:基于Q学习和共享值函数的无线传感器网络任务调度算法

获取原文
获取原文并翻译 | 示例

摘要

In dynamic Wireless Sensor Networks (WSNs), each sensor node should be allowed to schedule tasks by itself based on current environmental changes. Task scheduling on each sensor node should be done online towards balancing the tradeoff between resources utilization and application performance. In order to solve the problem of frequent exchange of cooperative information in existing cooperative learning algorithms, a task scheduling algorithm based on Q-learning and shared value function for WSNs, QS is proposed. Specifically, the task model for target monitoring applications and the cooperative Q-learning model are both established, and some basic elements of reinforcement learning including the delayed rewards and the state space are also defined. Moreover, according to the characteristic of the value of the function change, QS designs the sending constraint and the expired constraint of state value to reduce the switching frequency of cooperative information while guaranteeing the cooperative learning effect. Experimental results on NS3 show that QS can perform task scheduling dynamically according to current environmental changes; compared with other cooperative learning algorithms, QS achieves better application performance with achievable energy consumption and also makes each sensor node complete its functionality job normally. (C) 2017 Elsevier B.V. All rights reserved.
机译:在动态无线传感器网络(WSN)中,应允许每个传感器节点根据当前环境变化自行调度任务。每个传感器节点上的任务计划应在线完成,以平衡资源利用率和应用程序性能之间的权衡。为了解决现有合作学习算法中频繁交换合作信息的问题,提出了一种基于Q学习和共享价值函数的WSN任务调度算法。具体来说,既建立了目标监控应用的任务模型,又建立了协作Q学习模型,并定义了强化学习的一些基本要素,包括延迟奖励和状态空间。此外,根据功能变化值的特点,QS设计了状态值的发送约束和过期约束,以减少协作信息的切换频率,同时保证协作学习效果。 NS3上的实验结果表明,QS可以根据当前环境变化动态地执行任务调度;与其他协作学习算法相比,QS可以实现可实现的能源消耗,从而达到更好的应用性能,并使每个传感器节点正常完成其功能性工作。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Computer networks》 |2017年第24期|141-149|共9页
  • 作者单位

    Hefei Univ Technol, Sch Comp & Informat, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Comp & Informat, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Comp & Informat, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Comp & Informat, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Comp & Informat, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wireless sensor networks; Sensor nodes; Task scheduling; Q-leaming; Shared value function;

    机译:无线传感器网络;传感器节点;任务调度;Q学习;共享价值功能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号