首页> 中文期刊> 《模式识别与人工智能》 >基于Q学习和规划的传感器节点任务调度算法

基于Q学习和规划的传感器节点任务调度算法

     

摘要

To improve the learning policy and obtain better application performance of sensor nodes, a task scheduling algorithm based on Q-learning and programming ( QP) for sensor nodes is proposed with the task model of data collection applications. Specifically, some basic learning elements, such as state space, delayed reward and the exploration-exploitation policy, are defined in QP as well. Moreover, ac-cording to the characteristics of wireless sensor network(WSN), the programming process based on the expired mechanism and the priority mechanism is established to improve the learning policy by making full use of empirical knowledge. Experimental results show that QP has the ability to perform task schedu-ling dynamically according to current WSN environments. Compared with other task scheduling algo-rithms, QP achieves better application performance with reasonable energy consumption.%为了改善节点的学习策略,提高节点的应用性能,以数据收集为应用建立任务模型,提出基于Q学习和规划的传感器节点任务调度算法,包括定义状态空间、延迟回报、探索和利用策略等基本元素.根据无线传感器网络(WSN)特性,建立基于优先级机制和过期机制的规划过程,使节点可以有效利用经验知识,改善学习策略.实验表明,文中算法具备根据当前WSN环境进行动态任务调度的能力.相比其它任务调度算法,文中算法能量消耗合理且获得较好的应用性能.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号