首页> 外文期刊>Computer methods in biomechanics and bio >Accurate and fast deformable medical image registration for brain tumor resection using image-guided neurosurgery
【24h】

Accurate and fast deformable medical image registration for brain tumor resection using image-guided neurosurgery

机译:使用图像引导神经外科手术准确,快速,可变形的医学图像配准,用于脑肿瘤切除术

获取原文
获取原文并翻译 | 示例

摘要

We present a parallel adaptive physics-based non-rigid registration framework for aligning pre-operative to intra-operative brain magnetic resonance images (MRI) of patients who have undergone a tumor resection. This framework extends our earlier work on the physics-based methods by using an adaptive, multi-material, parallel finite element biomechanical model to describe the physical deformations of the brain. Our registration technology incorporates fast image-to-mesh convertors for remeshing the brain model in real-time eliminating the poor-quality elements; various linear solvers to accurately estimate the volumetric deformations; efficient block-matching techniques to compensate for the missing/unrealistic matches induced by the tumor resection. Our evaluation is based on six clinical volume MRI data-sets including (ⅰ) isotropic and anisotropic image spacings, and (ⅱ) partial and complete tumor resections. We compare our framework with four methods: a rigid and BSpline deformable registration implemented on 3D Slicer v4.4.0, a physics-based non-rigid registration available on ITK v4.7.0, and an adaptive physics-based non-rigid registration. We show that the proposed technology provides the finest MRI alignments among all the methods. The Hausdorff distance is on average up to 3.78 and 3.12 times more accurate compared to the rigid and the other non-rigid registration methods, respectively. Additionally, it brings the end-to-end execution within the real-time constraints imposed by the neurosurgical procedure. In a Linux Dell workstation with 12 Intel Xeon 3.47 GHz CPU cores and 96 GB of RAM, it registers the anisotropic volume data in less than 93 s and the isotropic data in less than 21 s.
机译:我们提出了一个基于并行自适应物理学的非刚性配准框架,用于对接受肿瘤切除术的患者进行术前与术中脑磁共振图像(MRI)对齐。该框架通过使用自适应,多材料,并行有限元生物力学模型来描述大脑的物理变形,扩展了我们在基于物理学的方法上的早期工作。我们的注册技术结合了快速的图像到网格转换器,可以实时刷新大脑模型,从而消除劣质元素;各种线性求解器,以准确估算体积变形;高效的块匹配技术,以补偿由肿瘤切除术引起的缺失/不切实际的匹配。我们的评估基于六个临床体积MRI数据集,包括(ⅰ)各向同性和各向异性图像间距,以及(ⅱ)部分和完整的肿瘤切除。我们将我们的框架与四种方法进行了比较:在3D Slicer v4.4.0上实现的刚性和BSpline可变形配准,在ITK v4.7.0上可用的基于物理的非刚性配准以及自适应的基于物理的非刚性配准。我们表明,所提出的技术在所有方法中提供了最好的MRI对准。相比刚性和其他非刚性套准方法,Hausdorff距离的平均精度分别高出3.78和3.12倍。另外,它使端到端的执行在神经外科手术所施加的实时约束范围内。在具有12个Intel Xeon 3.47 GHz CPU内核和96 GB RAM的Linux Dell工作站中,它在不到93 s的时间内记录了各向异性的体积数据,在不到21 s的时间内记录了各向同性的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号