首页> 外文期刊>Computer methods in biomechanics and bio >Improved regularisation constraints for compressed sensing of multi-slice MRI
【24h】

Improved regularisation constraints for compressed sensing of multi-slice MRI

机译:改进的正则化约束,用于多层MRI压缩感知

获取原文
获取原文并翻译 | 示例

摘要

In magnetic resonance imaging, the long acquisition time required to capture k-space data according to the Nyquist sampling rule is a major limitation. Methods for reducing the scan time for these types of imaging procedures have attracted considerable research interest. Compressed sensing approaches have recently been applied to allow faster acquisition by undersampling the k-space data. However, random undersampling introduces noise-like artefacts. To address this issue, a number of nonlinear reconstruction methods have been proposed that use ℓ_1 norm regularisation with a sparsifying transform. In this paper, we present a reconstruction method in which a Gaussian scale mixture model constraint in the wavelet domain is combined with a total variation constraint for use as a regularisation prior. A series of experimental evaluations are conducted to validate our method using synthetic and real multi-slice MRI data for the purposes of faster acquisition. Our results show that the volume reconstructed by our method has superior quality to the volumes reconstructed by other approaches.
机译:在磁共振成像中,根据奈奎斯特采样规则捕获k空间数据所需的较长采集时间是一个主要限制。用于减少这些类型的成像过程的扫描时间的方法引起了相当大的研究兴趣。压缩感测方法最近已被应用以通过对k空间数据进行欠采样来实现更快的采集。但是,随机欠采样会引入类似噪声的伪像。为了解决这个问题,已经提出了许多非线性重建方法,这些方法使用带有稀疏变换的ℓ_1范数正则化。在本文中,我们提出了一种重构方法,其中将小波域中的高斯尺度混合模型约束与总变化约束结合起来用作正则化先验。进行了一系列实验评估,以使用合成和真实的多层MRI数据验证我们的方法,以便更快地进行采集。我们的结果表明,通过我们的方法重建的体积比通过其他方法重建的体积具有更高的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号