首页> 外文期刊>Mathematical Problems in Engineering >Compressed Sensing MRI Reconstruction with Multiple Sparsity Constraints on Radial Sampling
【24h】

Compressed Sensing MRI Reconstruction with Multiple Sparsity Constraints on Radial Sampling

机译:径向采样中具有多个稀疏约束的压缩感知MRI重建

获取原文
获取原文并翻译 | 示例

摘要

Compressed Sensing Magnetic Resonance Imaging (CS-MRI) is a promising technique for accelerating MRI acquisitions by using fewer k-space data. Exploiting more sparsity is an important approach to improving the CS-MRI reconstruction quality. We propose a novel CS-MRI framework based on multiple sparse priors to increase reconstruction accuracy. The wavelet sparsity, wavelet tree structured sparsity, and nonlocal total variation (NLTV) regularizations were integrated in the CS-MRI framework, and the optimization problem was solved using a fast composite splitting algorithm (FCSA). The proposed method was evaluated on different types of MR images with different radial sampling schemes and different sampling ratios and compared with the state-of-the-art CS-MRI reconstruction methods in terms of peak signal-to-noise ratio (PSNR), feature similarity (FSIM), relative l2 norm error (RLNE), and mean structural similarity (MSSIM). The results demonstrated that the proposed method outperforms the traditional CS-MRI algorithms in both visual and quantitative comparisons.
机译:压缩传感磁共振成像(CS-MRI)是一种通过使用较少的k空间数据来加速MRI采集的有前途的技术。利用更多的稀疏性是提高CS-MRI重建质量的重要方法。我们提出了一种基于多个稀疏先验的新颖CS-MRI框架,以提高重建精度。将小波稀疏性,小波树结构稀疏性和非局部总变异(NLTV)正则化集成到CS-MRI框架中,并使用快速复合分割算法(FCSA)解决了优化问题。在不同类型的MR图像上采用不同的径向采样方案和不同的采样率对提出的方法进行了评估,并与最新的CS-MRI重建方法在峰值信噪比(PSNR)方面进行了比较,特征相似度(FSIM),相对l2范数误差(RLNE)和平均结构相似度(MSSIM)。结果表明,该方法在视觉和定量比较方面均优于传统的CS-MRI算法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第3期|3694604.1-3694604.14|共14页
  • 作者单位

    Northeast Forestry Univ Coll Mech & Elect Engn Harbin 150040 Heilongjiang Peoples R China;

    Guizhou Univ Coll Comp Sci & Technol Key Lab Intelligent Med Image Anal & Precise Diag Guiyang 550025 Guizhou Peoples R China;

    Univ Lyon INSA Lyon CNRS Inserm CREATIS UMR 5220 U1206 F-69621 Lyon France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号