首页> 外文期刊>Computer methods in biomechanics and bio >Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic model
【24h】

Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic model

机译:基于概率模型的对比增强超声中半自动肝局灶性病变的快速自动分割

获取原文
获取原文并翻译 | 示例

摘要

Assessment of focal liver lesions (FLLs) in contrast-enhanced ultrasound requires the delineation of the FLL in at least one frame of the acquired data, which is currently performed manually by experienced radiologists. Such a task leads to subjective results, is time-consuming and prone to misinterpretation and human error. This paper describes an attempt to improve this clinical practice by proposing a novel fast two-step method to automate the FLL segmentation, initialised only by a single seed point. Firstly, rectangular force functions are used to improve the accuracy and computational efficiency of an active ellipse model for approximating the FLL shape. Then, a novel probabilistic boundary refinement method is used to iteratively classify boundary pixels rapidly. The proposed method allows for faster and easier assessment of FLLs, whilst requiring less interaction, but producing results comparably consistent with manual delineations, and hence increasing the confidence of radiologists when making a diagnosis. Quantitative evaluation based on real clinical data, from two different European countries reflecting true clinical practice, demonstrates the value of the proposed method.
机译:在对比增强超声中评估局灶性肝病灶(FLL)要求在至少一帧采集的数据中划定FLL,这目前由经验丰富的放射科医生手动进行。这样的任务会导致主观结果,既费时又易于误解和人为错误。本文介绍了一种尝试通过提出一种新颖的快速两步法来自动进行FLL分割(仅由单个种子点初始化)来改善这种临床实践的尝试。首先,使用矩形力函数来提高用于近似FLL形状的主动椭圆模型的精度和计算效率。然后,使用一种新的概率边界细化方法对边界像素进行快速分类。所提出的方法可以更快,更轻松地评估FLL,同时需要更少的交互作用,但产生的结果与手动勾画相当一致,从而提高了放射科医生进行诊断的信心。基于来自两个不同欧洲国家的真实临床数据的定量评估,反映了真实的临床实践,证明了该方法的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号