首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Optimizing neotissue growth inside perfusion bioreactors with respect to culture and labor cost: a multi-objective optimization study using evolutionary algorithms
【24h】

Optimizing neotissue growth inside perfusion bioreactors with respect to culture and labor cost: a multi-objective optimization study using evolutionary algorithms

机译:优化灌注生物反应器内部灌注和劳动力成本中的新生生长:使用进化算法的多目标优化研究

获取原文
获取原文并翻译 | 示例

摘要

Tissue engineering is a fast progressing domain where solutions are provided for organ failure or tissue damage. In this domain, computer models can facilitate the design of optimal production process conditions leading to robust and economically viable products. In this study, we use a previously published computationally efficient model, describing the neotissue growth (cells + their extracellular matrix) inside 3D scaffolds in a perfusion bioreactor. In order to find the most cost-effective medium refreshment strategy for the bioreactor culture, a multi-objective optimization strategy was developed aimed at maximizing the neotissue growth while minimizing the total cost of the experiment. Four evolutionary optimization algorithms (NSGAII, MOPSO, MOEA/D and GDEIII) were applied to the problem and the Pareto frontier was computed in all methods. All algorithms led to a similar outcome, albeit with different convergence speeds. The simulation results indicated that, given the actual cost of the labor compared to the medium cost, the most cost-efficient way of refreshing the medium was obtained by minimizing the refreshment frequency and maximizing the refreshment amount.
机译:组织工程是一种快速进展域,其中提供了用于器官衰竭或组织损伤的溶液。在此域中,计算机型号可以促进最佳生产过程条件的设计,从而实现强大,经济上可行的产品。在这项研究中,我们使用先前公布的计算效率模型,描述了在灌注生物反应器中的3D支架内的新发现生长(细胞+它们的细胞外基质)。为了寻找生物反应器文化最具成本效益的中茶点策略,开发了一种多目标优化策略,旨在最大限度地提高新生生长,同时最小化实验的总成本。在问题上应用了四种进化优化算法(NSGaii,MOPSO,MOEA / D和GDEIII),并且在所有方法中计算了帕累托前沿。所有算法都导致了类似的结果,尽管具有不同的收敛速度。仿真结果表明,鉴于劳动的实际成本与中成本相比,通过最小化刷新频率并最大化茶点来获得最具成本的刷新方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号