首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Construction of a risk model through the fusion of experimental data and finite element modeling: Application to car crash-induced TBI
【24h】

Construction of a risk model through the fusion of experimental data and finite element modeling: Application to car crash-induced TBI

机译:通过融合实验数据和有限元建模来构建风险模型:在车祸诱发的TBI中的应用

获取原文
获取原文并翻译 | 示例

摘要

This article introduces a new approach for the construction of a risk model for the prediction of Traumatic Brain Injury (TBI) as a result of a car crash. The probability of TBI is assessed through the fusion of an experiment-based logistic regression risk model and a finite element (FE) simulation-based risk model. The proposed approach uses a multilevel framework which includes FE simulations of vehicle crashes with dummy and FE simulations of the human brain. The loading conditions derived from the crash simulations are transferred to the brain model thus allowing the calculation of injury metrics such as the Cumulative Strain Damage Measure (CSDM). The framework is used to propagate uncertainties and obtain probabilities of TBI based on the CSDM injury metric. The risk model from FE simulations is constructed from a support vector machine classifier, adaptive sampling, and Monte-Carlo simulations. An approach to compute the total probability of TBI, which combines the FE-based risk assessment as well as the risk prediction from the experiment-based logistic regression model is proposed. In contrast to previous published work, the proposed methodology includes the uncertainty of explicit parameters such as impact conditions (e.g., velocity, impact angle), and material properties of the brain model. This risk model can provide, for instance, the probability of TBI for a given assumed crash impact velocity.
机译:本文介绍了一种新方法,用于构建预测因车祸导致的颅脑外伤(TBI)的风险模型。通过融合基于实验的逻辑回归风险模型和基于有限元(FE)模拟的风险模型,可以评估TBI的可能性。所提出的方法使用多级框架,该框架包括带有假人的车辆碰撞的有限元模拟和人脑的有限元模拟。从碰撞模拟中得出的载荷条件被传输到大脑模型,从而允许计算损伤度量,例如累积应变损伤度量(CSDM)。该框架用于传播不确定性,并基于CSDM伤害指标获得TBI的概率。有限元仿真的风险模型由支持向量机分类器,自适应采样和蒙特卡洛仿真构建。提出了一种计算TBI总概率的方法,该方法结合了基于有限元的风险评估和基于实验的逻辑回归模型的风险预测。与先前发表的工作相反,所提出的方法包括明确参数的不确定性,例如冲击条件(例如,速度,冲击角)和大脑模型的材料特性。例如,该风险模型可以提供给定假定碰撞冲击速度的TBI概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号