首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis
【24h】

The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis

机译:使用人工神经网络减少确定脊柱负荷的数据收集需求:基于实验室的分析

获取原文
获取原文并翻译 | 示例

摘要

The extensive data requirements of three-dimensional inverse dynamics and joint modelling to estimate spinal loading prevent the implementation of these models in industry and may hinder development of advanced injury prevention standards. This work examines the potential of feed forward artificial neural networks (ANNs) as a data reduction approach and compared predictions to rigid link and EMG-assisted models. Ten males and ten females performed dynamic lifts, all approaches were applied and comparisons of predicted joint moments and joint forces were evaluated. While the ANN under-predicted peak extension moments (p = 0.0261) and joint compression (p < 0.0001), predictions of cumulative extension moments (p = 0.8293) and cumulative joint compression (p = 0.9557) were not different. Therefore, the ANNs proposed may be used to obtain estimates of cumulative exposure variables with reduced input demands; however they should not be applied to determine peak demands of a worker's exposure.
机译:三维逆动力学和联合建模以估计脊柱负荷的大量数据需求阻止了这些模型在工业中的实施,并可能阻碍高级伤害预防标准的制定。这项工作检查了前馈人工神经网络(ANN)作为数据缩减方法的潜力,并将预测与刚性链接和EMG辅助模型进行了比较。十名男性和十名女性进行动态举升,应用了所有方法,并评估了预测的关节力矩和关节力的比较。虽然ANN预测的峰值伸展力矩(p = 0.0261)和关节压缩(p <0.0001)预测不足,但累积伸展力矩(p = 0.8293)和累积关节压缩(p = 0.9557)的预测没有差异。因此,提出的人工神经网络可用于获得输入需求减少的累积暴露变量的估计值。但是,不应将其用于确定工人暴露的最高需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号