首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms
【24h】

Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms

机译:基于备用神经网络算法的小波变换对压缩的肌电信号进行分析和分类

获取原文
获取原文并翻译 | 示例

摘要

We propose intelligent methods for classifying three different muscle types, i.e. biceps, frontallis and abductor pollicis brevis muscles, with low computational complexity. For this aim, electromyogram (EMG) signals are recorded and modelled by using an auto-regressive (AR) model. As the size of the EMG signals is usually large, the computational complexity of artificial neural network (ANN) systems drastically increases. Therefore, in the proposed scheme EMG signals are pre-processed by using a wavelet transform and then they are modelled by employing an AR approach. The AR coefficients are used to train and test the ANNs. Experimental results show that the highest achieved classification accuracy is more than 95% in the case of EMG signals pre-processed by wavelet transform. The wavelet transform-based pre-processing significantly increases the performance rates compared to standard multilayer perceptron and general regression neural networks algorithms.
机译:我们提出了智能的方法来对三种不同的肌肉类型进行分类,即计算复杂度低的二头肌,额肌和短poll外展肌。为此,使用自回归(AR)模型记录并建模肌电图(EMG)信号。由于EMG信号的大小通常很大,因此人工神经网络(ANN)系统的计算复杂性急剧增加。因此,在提出的方案中,通过使用小波变换对EMG信号进行预处理,然后采用AR方法对其进行建模。 AR系数用于训练和测试ANN。实验结果表明,在小波变换预处理的肌电信号中,分类精度最高达到95%以上。与标准多层感知器和常规回归神经网络算法相比,基于小波变换的预处理显着提高了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号