首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Computation of fractal features based on the fractal analysis of surface Electromyogram to estimate force of contraction of different muscles
【24h】

Computation of fractal features based on the fractal analysis of surface Electromyogram to estimate force of contraction of different muscles

机译:基于表面肌电图的分形分析计算分形特征以估计不同肌肉的收缩力

获取原文
获取原文并翻译 | 示例

摘要

This research study investigates the fractal properties of surface Electromyogram (sEMG) to estimate the force levels of contraction of three muscles with different cross-sectional areas (CSA): m. quadriceps-vastus lateralis, m. biceps brachii, andm. flexor digitorum superficialis. The fractal features were computed based on the fractal analysis of sEMG, signal recorded while performing sustained muscle contraction at different force levels. A comparison was performed between the fractal features and five other features reported in the literature. Linear regression analysis was carried out to determine the relationship between the force of contraction (20-100%) and features of sEMG. The results from the coefficients of regression (r~2) show that the new fractal feature, maximum fractal length of the signal has highest correlation (range 0.88-0.90) when compared with other features which ranges from 0.34 to 0.74 for the three different muscles. This study suggests that the estimation of various levels of sustained contraction of muscles with varied CSA will provide a better insight into the biomechanics model that involves muscle properties and muscle activation.
机译:这项研究调查了表面肌电图(sEMG)的分形特性,以估计具有不同截面积(CSA)的三块肌肉的收缩力水平:m。股四头肌-外侧肌肱二头肌肱二头肌指浅屈肌。分形特征是基于sEMG的分形分析计算得出的,该信号在以不同的力水平执行持续的肌肉收缩时记录了信号。分形特征和文献中报道的其他五个特征之间进行了比较。进行线性回归分析以确定收缩力(20-100%)与sEMG特征之间的关系。回归系数(r〜2)的结果表明,新的分形特征,即信号的最大分形长度与三块不同肌肉的其他分形特征(从0.34到0.74)相比具有最高的相关性(范围为0.88-0.90)。 。这项研究表明,估计不同CSA引起的肌肉持续收缩的不同水平,将为涉及肌肉特性和肌肉激活的生物力学模型提供更好的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号