首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Assessment of cortical bone fracture resistance curves by fusing artificial neural networks and linear regression
【24h】

Assessment of cortical bone fracture resistance curves by fusing artificial neural networks and linear regression

机译:通过融合人工神经网络和线性回归评估皮质骨骨折抵抗曲线

获取原文
获取原文并翻译 | 示例

摘要

Bone injures (BI) represents one of the major health problems, together with cancer and cardiovascular diseases. Assessment of the risks associated with BI is nontrivial since fragility of human cortical bone is varying with age. Due to restrictions for performing experiments on humans, only a limited number of fracture resistance curves (R-curves) for particular ages have been reported in the literature. This study proposes a novel decision support system for the assessment of bone fracture resistance by fusing various artificial intelligence algorithms. The aim was to estimate the R-curve slope, toughness threshold and stress intensity factor using the two input parameters commonly available during a routine clinical examination: patients age and crack length. Using the data from the literature, the evolutionary assembled Artificial Neural Network was developed and used for the derivation of Linear regression (LR) models of R-curves for arbitrary age. Finally, by using the patient (age)-specific LR models and diagnosed crack size one could estimate the risk of bone fracture under given physiological conditions. Compared to the literature, we demonstrated improved performances for estimating nonlinear changes of R-curve slope (R-2 = 0.82 vs. R-2 = 0.76) and Toughness threshold with ageing (R-2 = 0.73 vs. R-2 = 0.66).
机译:骨损伤(BI)与癌症和心血管疾病一起是主要的健康问题之一。由于人皮质骨的脆性随年龄而变化,因此与BI相关的风险的评估并非易事。由于在人类上进行实验的限制,文献中仅报道了特定年龄的有限数量的抗断裂曲线(R曲线)。这项研究提出了一种新颖的决策支持系统,用于通过融合各种人工智能算法来评估骨折抵抗力。目的是使用常规临床检查中常用的两个输入参数(患者年龄和裂缝长度)来估算R曲线斜率,韧性阈值和应力强度因子。利用文献中的数据,开发了演化组装的人工神经网络,并将其用于推导任意年龄的R曲线的线性回归(LR)模型。最后,通过使用患者(年龄)特定的LR模型和诊断出的裂缝尺寸,可以估算在给定生理条件下骨折的风险。与文献相比,我们展示了改进的性能,可用于估计R曲线斜率的非线性变化(R-2 = 0.82 vs. R-2 = 0.76)和韧性阈值随老化(R-2 = 0.73 vs. R-2 = 0.66) )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号