首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems
【24h】

A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems

机译:对流扩散问题的非协调有限元逼近的流线扩散方法

获取原文
获取原文并翻译 | 示例

摘要

We consider a nonconforming streamline-diffusion finite element method for solving convection-diffusion problems. The theoretical and numerical investigation for triangular and tetrahedral meshes recently given by John, Maubach and Tobiska has shown that the usual application of the SDFEM gives not a sufficient stabilization. Additional parameter dependent jump terms have been proposed which preserve the same order of convergence as in the conforming case. The error analysis has been essentially based on the existence of a conforming finite element subspace of the nonconforming space.
机译:我们考虑一种非协调流线扩散有限元方法来解决对流扩散问题。 John,Maubach和Tobiska最近对三角形和四面体网格进行了理论和数值研究,结果表明,SDFEM的常规应用不能提供足够的稳定性。已经提出了附加的与参数有关的跳跃项,该跳跃项保持与一致情况下相同的收敛阶数。误差分析基本上是基于不合格空间的合格有限元子空间的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号