首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications
【24h】

Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications

机译:声学中有限元方法的误差估计和适应性:2D和3D应用

获取原文
获取原文并翻译 | 示例

摘要

This paper is dedicated to the control of accuracy and to the adaptivity of the finite element simulation of sound propagation. Assuming time-harmonic behaviour, the mathematical models are given as boundary value problems for the Helmholtz equation. Two singularities inherent to the operator are demonstrated: the k-singularity, related to the phase shift between the exact and the numerical waves, and the A-singularity corresponding to the singularity at the eigenfrequencies. Two a posteriori error estimators are developed and the numerical tests show that, due to these specific singularities, error control cannot, in general, be accomplished by just 'transplanting' methods that work well in static computations. Furthermore, for low wave numbers, it is necessary also to control the influence of the geometric or physical singularities. An h-adaptive version with refinement is applied to 2D and 3D real-life problems.
机译:本文致力于精确度的控制和声音传播的有限元模拟的适应性。假设时谐行为,则将数学模型作为Helmholtz方程的边值问题给出。证明了算子固有的两个奇点:与精确波和数值波之间的相移有关的k奇点,与在本征频率处的奇点相对应的A奇点。开发了两个后验误差估计器,数值测试表明,由于这些特殊的奇异性,通常不能仅通过在静态计算中运行良好的“移植”方法来实现误差控制。此外,对于低波数,还必须控制几何或物理奇异点的影响。具有改进功能的h自适应版本适用于2D和3D现实问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号