首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov equation by a spectral finite difference method
【24h】

Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov equation by a spectral finite difference method

机译:加性高斯和泊松白噪声驱动的随机动力系统的响应:频谱有限差分法求解正向广义Kolmogorov方程

获取原文
获取原文并翻译 | 示例

摘要

A numerical method is given for the solution of the probability density function of the response process of memoryless one- and two-state dynamical systems having polynomial restoring forces and which are subjected to a combination of Gaussian and Poisson white noises. The method employs the Fourier transformed forward generalized Kolmogorov equation to arrive at an initial-boundary value problem for the characteristic function, which is solved using a high-order finite difference procedure. The probability density function is recovered by numerical inverse Fourier transformation. Several examples are given, the results of which are compared with analytical solutions where available and with simulation otherwise.
机译:给出了一种数值方法,用于求解具有多项式恢复力并且受到高斯和泊松白噪声组合影响的无记忆一态和二态动力系统的响应过程的概率密度函数。该方法采用傅立叶变换的前向广义Kolmogorov方程来得出特征函数的初边界值问题,该问题可以通过高阶有限差分法求解。通过数值傅里叶逆变换来恢复概率密度函数。给出了几个示例,将其结果与可用的分析解决方案进行比较,否则与仿真进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号