首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity
【24h】

Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity

机译:横观各向同性几乎不可压缩的有限弹性的分析,有限元计算和误差估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present constitutive models for nearly incompressible. transversely isotropic materials in finite hyperelasticity, particularly for reinforced rubber-like materials. which are of essential engineering interest. The theory is developed using a convected curvilinear coordinate system based on a mixed two-field displacement pressure energy functional. Furthermore, an a posteriori error estimator without multiplicative constants is derived for non-linear anisotropic problems. which measures the discretization error in the first Piola-Kirchhoff stresses in the L_2-norm by solving local Neumann problems with equilibrated tractions. Illustrative numerical examples demonstrate the anisotropic material behaviour of reinforced materials and the efficiency of using adaptive finite element methods.
机译:在本文中,我们提出了几乎不可压缩的本构模型。横观各向同性的材料,具有超高弹性,特别是用于增强橡胶状材料。具有重要的工程意义。该理论是基于对流曲线坐标系基于混合两场位移压力能量函数开发的。此外,针对非线性各向异性问题,推导了没有乘法常数的后验误差估计器。它通过求解具有平衡牵引力的局部诺伊曼问题来测量L_2范数中第一个Piola-Kirchhoff应力中的离散化误差。说明性的数值示例说明了增强材料的各向异性材料行为以及使用自适应有限元方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号