首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stabilized mixed finite element methods based on Riesz-representing operators for solving saddle point problems
【24h】

Stabilized mixed finite element methods based on Riesz-representing operators for solving saddle point problems

机译:基于Riesz表示算子的稳定混合有限元方法求解鞍点问题

获取原文
获取原文并翻译 | 示例

摘要

Based on Riesz-representing operators, a new stabilized finite element method is presented for saddle point problems. It is proved that this method is not subject to the discrete Babugka-Brezzi condition, and that the corresponding finite element approximation problem yields a symmetrically positively definite linear system. Error bounds are obtained which are agree with the interpolation properties. As an application, the stationary Stokes problem is analyzed.
机译:基于Riesz表示算子,提出了一种新的稳定化有限元方法。证明该方法不受离散Babugka-Brezzi条件的影响,并且相应的有限元逼近问题产生了对称的正定线性系统。获得与插值属性一致的误差范围。作为应用,分析了静态斯托克斯问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号