首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Synthetic division based integration of rational functions of bivariate polynomial numerators with linear denominators over a unit triangle {0 ≤ξ, n ≤ 1, ξ+ n ≤ 1} in the local parametric space ( ξ, n)
【24h】

Synthetic division based integration of rational functions of bivariate polynomial numerators with linear denominators over a unit triangle {0 ≤ξ, n ≤ 1, ξ+ n ≤ 1} in the local parametric space ( ξ, n)

机译:基于局部因子空间(ξ,n)的单位三角形{0≤ξ,n≤1,ξ+ n≤1}上具有线性分母的二元多项式分子的有理函数的基于合成除法的积分

获取原文

摘要

The domain of real problems in mechanics often contains curved boundaries. Curved boundaries are often more accurately modelled by curved finite elements than by straight edged elements, as straight sides are perfectly satisfactory if the domain has a polygonal boundary. Because fewer curved elements are required, the effort needed to obtain a solution is usually reduced. If some parts of the boundary are curved, however, elements with at least one curved side are desirable. Our aim in this paper is to consider the triangular element with two straight sides and one curved side. This paper is concerned with explicit formulae for evaluating integrals of rational functions of bivariate polynomial numerators with linear denominators over a unit triangle {0 ≤ξ, n ≤ 1, ξ+ n ≤ 1} in the local parametric two dimensional space {ξ, n). These integrals arise in finite element formulations of second order linear partial dif ferential equations by use of triangular element with two straight sides and one curved side of quadratic variation which often require relatively large numerical effort to integrate. The curved elements considered here are the four node, six node and ten node triangular elements with one curved side of quadratic variation and the other two sides have straight edges under the isoparametric and sub- parametric transformations, respectively. We have shown that by use of a method similar to synthetic division, the rational integrals of nth order bivariate polynomial numerator with a linear denominator having (n + l)(n + 2)/2 integrals can be reduced to rational i
机译:力学中实际问题的领域通常包含弯曲的边界。弯曲边界通常比弯曲直角单元更精确地由弯曲有限元建模,因为如果域具有多边形边界,则直边完全令人满意。因为需要较少的弯曲元件,所以通常会减少获得解决方案所需的精力。但是,如果边界的某些部分是弯曲的,则希望具有至少一个弯曲侧面的元件。本文的目的是考虑具有两个直边和一个弯曲边的三角形单元。本文涉及在局部参数二维空间{ξ,n中,对单位三角形{0≤ξ,n≤1,ξ+ n≤1}上具有线性分母的二元多项式分子的有理函数积分进行评估的显式公式)。这些积分是通过使用具有二次方的两个直边和一个弯曲边的三角形元素而在二阶线性偏微分方程的有限元公式中产生的,这些三角形元素通常需要较大的数值努力来积分。这里考虑的弯曲元素是四个节点,六个节点和十个节点的三角形元素,其中一个具有二次方曲线的弯曲边,而另外两个边在等参和次参变换下分别具有直边。我们已经表明,通过使用类似于合成除法的方法,具有(n + l)(n + 2)/ 2积分的线性分母的n阶二元多项式分子的有理积分可以被简化为i

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号