首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Combining metamodels with rational function representations of discretization error for uncertainty quantification
【24h】

Combining metamodels with rational function representations of discretization error for uncertainty quantification

机译:将元模型与离散化误差的有理函数表示相结合以进行不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Techniques for producing metamodels for the efficient Monte Carlo simulation of high consequence systems are presented. The bias of f.e.m mesh discretization errors is eliminated or minimized by extrapolation, using rational functions, rather than the power series representation of Richardson extrapolation. Examples, including estimation of the vibrational frequency of a one-dimensional bar, show that the rational function model gives more accurate estimates using fewer terms than Richardson extrapolation, an important consideration for computational reliability assessment of high-consequence systems, where small biases in solutions can significantly affect the accuracy of small-magnitude probability estimates.
机译:提出了用于为高后果系统进行有效的蒙特卡洛模拟的生成元模型的技术。 f.e.m网格离散化误差的偏倚通过使用有理函数而不是Richardson外推的幂级数表示进行外推来消除或最小化。实例(包括一维条的振动频率的估计)表明,与理查森外推法相比,有理函数模型使用更少的项给出了更准确的估计值,这是高后果系统的计算可靠性评估的重要考虑,其中解决方案中的偏差很小会严重影响小幅度概率估计的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号