首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Dynamically knots setting in meshless method for solving time dependent propagations equation
【24h】

Dynamically knots setting in meshless method for solving time dependent propagations equation

机译:用无网格法动态求解时滞传播方程。

获取原文
获取原文并翻译 | 示例

摘要

In order to display a function with some finite discrete sampling data efficiently, we require more sampling data where the function is more oscillatory, and less sampling data where the function is more flat. If the function is happen to be a solution of partial differential equation and is solved by finite elements method, then we should construct finer element near the singularity. However, we do not know where the oscillation or even shocks will happen to a function, which is a solution of non-linear partial differential equation. Therefore we cannot preset the finer elements near such points. A trivial method is taking very dense knots or very fine elements everywhere to keep the accuracy. This strategy cost the computation time. Another idea is to move the position of the sampling points according to the varying of the function with the time. We observed that, this approach could be achieved by Lagrangian formulation for finite difference method. However the Lagrangian formulation does not possess shape preserving and variation diminishing properties. It is difficult to achieve the approach for finite elements methods too, because the moving knots will destroy the topology of the mesh. Recently the meshless method becomes to topic to solve partial differential equation numerically. The meshless method does not require any mesh or any structure of the knots (sampling points); therefore we can move the knots freely to simulate the problem. The only restriction is to keep the knots no overlapping. This paper is a test of our approach for the Burger's equation with radial basis quasi-interpolation.
机译:为了有效地显示带有有限离散采样数据的函数,我们需要在函数更具振荡性的地方提供更多的采样数据,而在函数更加平坦的情况下需要更少的采样数据。如果函数碰巧是偏微分方程的解并且通过有限元法求解,那么我们应该在奇点附近构造更精细的元素。但是,我们不知道函数将在哪里发生振荡甚至震动,这是非线性偏微分方程的解。因此,我们无法在这些点附近预设更精细的元素。一个简单的方法是在各处采用非常密集的结或非常精细的元素来保持精度。这种策略花费了计算时间。另一个想法是根据函数随时间的变化来移动采样点的位置。我们观察到,这种方法可以通过有限差分法的拉格朗日公式来实现。但是,拉格朗日公式不具有形状保持和减小变化的特性。同样也很难实现有限元方法,因为运动的结会破坏网格的拓扑。近来,无网格方法成为数值求解偏微分方程的主题。无网格方法不需要任何网格或结的任何结构(采样点)。因此我们可以自由移动结来模拟问题。唯一的限制是保持节点不重叠。本文是对我们采用径向基准插值的Burgers方程方法的检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号