首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials
【24h】

A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials

机译:用于多晶材料中应力晶粒生长的中尺度建模的变分公式和双网格方法

获取原文
获取原文并翻译 | 示例

摘要

A deterministic approach for meso-scale modeling of grain growth in stressed polycrystalline materials based on the principle of virtual power is presented. The variational equation is formulated based on the power balance of the system associated with grain boundary surface tension and curvature, rate of strain energy stored in each grain, strain energy density jump across the grain boundaries, and external work rate. The numerical solution of stressed grain growth variational equation requires discretization of grain interiors and grain boundaries. This cannot be effectively modeled by Lagrangian, Eulerian, or Arbitrary Lagrangian Eulerian finite element method if grain boundary migration (moving interfaces) and topological changes of grain boundary geometry are considered. This paper presents a double-grid method to resolve the above mentioned difficulty. In this approach, the material grid points carry material kinematic variables, whereas the grain boundary grid points carry grain boundary kinematic variables. The material domain is discretized by a moving least squares reproducing kernel approximation with strain discontinuity enrichment across the grain boundaries. The grain boundaries, on the other hand, are discretized by the standard finite elements. An interface enrichment function to accurately capture strain jump conditions across the grain boundaries is introduced. A reproducing kernel approximation that includes the periodicity of the unit cell in the construction of reproducing kernel shape function for material velocity is also presented. This proposed double-grid method allows modeling of arbitrary evolution of grain boundaries without remeshing.
机译:提出了一种基于虚拟功率原理的确定性多晶材料晶粒长大中观模型的确定性方法。基于与晶界表面张力和曲率相关的系统的功率平衡,存储在每个晶粒中的应变能的比率,跨越晶界的应变能密度跃变以及外部工作速率来公式化变分方程。应力晶粒长大变分方程的数值解需要离散晶粒内部和晶界。如果考虑了晶界迁移(移动界面)和晶界几何形状的拓扑变化,则无法通过拉格朗日,欧拉或任意拉格朗日欧拉有限元方法有效地建模。本文提出了一种双网格方法来解决上述困难。在这种方法中,材料网格点带有材料运动学变量,而晶界网格点带有晶粒边界运动学变量。通过移动最小二乘重现核近似来离散材料域,该近似近似具有跨越晶界的应变不连续性富集。另一方面,晶界通过标准有限元离散化。引入了一种界面富集功能,可以准确捕获跨晶界的应变跳跃条件。还提出了一种再生核近似,其中包括构造材料速度的再生核形状函数时包含单位晶胞的周期性。该提出的双网格方法允许对晶界的任意演化进行建模而无需重新网格化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号