首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems
【24h】

An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems

机译:一种大位移流固耦合问题全耦合解决方案的有效求解器

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the fully coupled ('monolithic') solution of large-displacement fluid-structure interaction problems by Newton's method. We show that block-triangular approximations of the Jacobian matrix, obtained by neglecting selected fluid-structure interaction blocks, provide good preconditioners for the solution of the linear systems with GMRES. We present an efficient approximate implementation of the preconditioners, based on a Schur complement approximation for the Navier-Stokes block and the use of multigrid approximations for the solution of the computationally most expensive operations. The performance of the the preconditioners is examined in representative steady and unsteady simulations which show that the GMRES iteration counts only display a mild dependence on the Reynolds number and the mesh size. The final part of the paper demonstrates the importance of consistent stabilisation for the accurate simulation of fluid-structure interaction problems.
机译:本文涉及牛顿法的大位移流固耦合问题的全耦合(“整体”)解决方案。我们表明,忽略选择的流体-结构相互作用块而获得的雅可比矩阵的块三角形近似,为GMRES线性系统的求解提供了良好的前提条件。我们基于Navier-Stokes块的Schur补码逼近,以及使用多重网格逼近来解决计算上最昂贵的运算,提供了预处理器的高效逼近实现。在有代表性的稳态和非稳态模拟中检查了预处理器的性能,这些模拟显示GMRES迭代计数仅对Reynolds数和网格大小显示出轻微的依赖性。本文的最后一部分证明了稳定稳定对于精确模拟流固耦合问题的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号