首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Advances in the numerical treatment of grain-boundary migration: Coupling with mass transport and mechanics
【24h】

Advances in the numerical treatment of grain-boundary migration: Coupling with mass transport and mechanics

机译:晶界迁移数值处理的新进展:与质量输运和力学的耦合

获取原文
获取原文并翻译 | 示例

摘要

This work is based upon a coupled, lattice-based continuum formulation that was previously applied to problems involving strong coupling between mechanics and mass transport; e.g. diffusional creep and electromigration [K. Garikipati, L.C. Bassman, M.D. Deal, A lattice-based micromechanical continuum formulation for stress-driven mass transport in polycrystalline solids, J. Mech. Phys. Solids 49(6) (2001) 1209-1237; K. Garikipati, L.C. Bassman, Atomically-based field formulations for coupled problems of composition and mechanics, in: L.P. Kubin, J.L. Bassani, K. Cho, H. Gao, R.L.B. Selinger (Eds.), MRS symposium proceedings, Multiscale Modeling of Materials—2000, vol. 653, Materials Research Society, Warrendale, 2001, pp. Z9.6.1-Z9.6.6]. Here we discuss an enhancement of this formulation to account for migrating grain boundaries. The level set method is used to model grain-boundary migration in an Eulerian framework where a grain boundary is represented as the zero level set of an evolving higher-dimensional function. This approach can easily be generalized to model other problems involving migrating interfaces; e.g. void evolution and free-surface morphology evolution. The level-set equation is recast in a remarkably simple form which obviates the need for spatial stabilization techniques. This simplified level-set formulation makes use of velocity extension and field re-initialization techniques. In addition, a least-squares smoothing technique is used to compute the local curvature of a grain boundary directly from the level-set field without resorting to higher-order interpolation. A notable feature is that the coupling between mass transport, mechanics and grain-boundary migration is fully accounted for. The complexities associated with this coupling are highlighted and the operator-split algorithm used to solve the coupled equations is described.
机译:这项工作基于耦合的,基于晶格的连续体公式,该公式以前曾用于涉及力学与传质之间强耦合的问题。例如扩散蠕变和电迁移[K.加里奇帕蒂(L.C.) Bassman,M.D. Deal,《基于应力的多晶固体传质传质的基于晶格的微机械连续谱》,J。Mech。物理Solids 49(6)(2001)1209-1237;加里奇帕蒂(K. Garikipati) Bassman,基于原子的场组成公式,用于解决组成和力学的耦合问题,见:L.P. Kubin,J.L. Bassani,K.Cho,H.Gao,R.L.B. Selinger(编辑),MRS研讨会论文集,《材料多尺度建模》,2000年,第1卷。 653,材料研究学会,Warrendale,2001,pp.Z9.6.1-Z9.6.6]。在这里,我们讨论了此公式的增强,以解决晶粒边界的迁移。水平集方法用于在欧拉框架中对晶界迁移进行建模,在该框架中,晶界表示为不断发展的高维函数的零水平集。可以很容易地推广这种方法,以对涉及迁移接口的其他问题进行建模。例如空隙演化和自由表面形态演化。水平集方程式以非常简单的形式重铸,从而消除了对空间稳定技术的需求。这种简化的水平集公式利用了速度扩展和场重新初始化技术。另外,最小二乘平滑技术用于直接从水平集场计算晶粒边界的局部曲率,而无需求助于高阶插值。一个显着的特征是,充分考虑了传质,力学与晶界迁移之间的耦合。突出显示了与此耦合相关的复杂性,并描述了用于求解耦合方程的算子拆分算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号