首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures
【24h】

Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures

机译:面向目标的误差估计方法扩展到冲击加载的弹性体-增强结构的高非线性响应模拟

获取原文
获取原文并翻译 | 示例

摘要

This paper describes extensions of goal-oriented methods for a posteriori error estimation and control of numerical approximation to a class of highly-nonlinear problems in computational solid mechanics. An updated Lagrangian formulation of the dynamical, large-deformation response of structures composed of strain-rate-sensitive elastomers and elastoplastic materials is developed. To apply the theory of goal-oriented error estimation, a backward-in-time dual formulation of these problems is derived, and residual error estimators for meaningful quantities of interest are established. The target problem class is that of axisymmetric deformations of layered elastomer-reinforced shells-of-revolution subjected to shock loading. Extensive numerical results on solutions of representative problems are given. It is shown that extensions of the theory of goal-oriented error estimation can be developed and applied effectively to a class of highly-nonlinear, multi-physics problems in solid and structural mechanics.
机译:本文介绍了面向目标的方法的扩展,用于后验误差估计和数值逼近控制,以解决一类计算固体力学中的高度非线性问题。开发了由应变率敏感的弹性体和弹塑性材料组成的结构的动态大变形响应的更新拉格朗日公式。为了应用面向目标的误差估计理论,推导了这些问题的后向对偶公式,并建立了有意义的有意义量的剩余误差估计器。目标问题类别是承受冲击载荷的层状弹性体增强的旋转壳体的轴对称变形。给出了解决代表性问题的大量数值结果。结果表明,面向目标的误差估计理论的扩展可以得到发展,并可以有效地应用于固体和结构力学中的一类高度非线性的多物理场问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号