首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem
【24h】

Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem

机译:非线性标量双曲问题的不连续Galerkin解的超收敛性

获取原文
获取原文并翻译 | 示例

摘要

In this paper we study the superconvergence of the discontinuous Galerkin solutions for nonlinear hyperbolic partial differential equations. On the first inflow element we prove that the p-degree discontinuous finite element solution converges at Radau points with an O(h~(p+2)) rate. We further show that the solution flux converges on average at O(h~(2p+2)) on element outflow boundary when no reaction terms are present. For reaction-convection problems we establish an O(h~(min(2p+2,p+4)) superconvergence rate of the flux on element outflow boundary. Globally, we prove that the flux converges at O(h~(2p+1)) on average at the outflow of smooth-solution regions for nonlinear conservation laws. Numerical computations indicate that our results extend to nonrectangular meshes and nonuniform polynomial degrees. We further include a numerical example which shows that discontinuous solutions are superconvergent to the unique entropy solution away from shock discontinuities.
机译:在本文中,我们研究了非线性双曲型偏微分方程的不连续Galerkin解的超收敛性。在第一个流入单元上,我们证明p度不连续有限元解在Radau点处以O(h〜(p + 2))速率收敛。我们进一步表明,当不存在反应项时,溶液通量平均收敛于元素流出边界处的O(h〜(2p + 2))。对于反应对流问题,我们建立了元素流出边界上通量的O(h〜(min(2p + 2,p + 4))超收敛速率,从整体上证明了通量收敛于O(h〜(2p + 1))平均而言,对于非线性守恒定律,光滑解区域的流出数值计算表明我们的结果扩展到非矩形网格和非均匀多项式度;我们还包括一个数值示例,表明不连续解对唯一熵超收敛解决震动不连续的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号