首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Uncertainty propagation in finite deformations—A spectral stochastic Lagrangian approach
【24h】

Uncertainty propagation in finite deformations—A spectral stochastic Lagrangian approach

机译:有限形变中的不确定性传播-谱随机拉格朗日方法

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a method for quantifying uncertainty propagation in finite deformation problems using the spectral stochastic finite element method (SSFEM). A spectral expansion of the current configuration of a deforming body is proposed to compute the stochastic deformation gradient which is in turn used to compute the stochastic analogs of the various quantities which appear in large deformation analysis such as strain and stress measures and consistent moduli. A total Lagrangian approach to the stochastic large deformation problem is presented. Model problems in large deformation elasto-plasticity are considered highlighting the features of the methodology developed. Rigorous comparisons with Monte-Carlo solutions are presented. It is shown that the proposed approach can estimate the probability density function and response statistics of the field variables with satisfactory accuracy.
机译:这项工作提出了一种使用频谱随机有限元方法(SSFEM)来量化有限变形问题中不确定性传播的方法。提出了变形体当前构型的频谱扩展,以计算随机变形梯度,进而用于计算在大变形分析中出现的各种量的随机模拟物,例如应变和应力测量值以及一致的模量。提出了一种随机大变形问题的整体拉格朗日方法。大变形弹塑性中的模型问题被认为突出了所开发方法的特征。提出了与蒙特卡洛解决方案的严格比较。结果表明,该方法能够以满意的精度估计出场变量的概率密度函数和响应统计量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号