首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Unsymmetric and symmetric meshless schemes for the unsteady convection-diffusion equation
【24h】

Unsymmetric and symmetric meshless schemes for the unsteady convection-diffusion equation

机译:非定常对流扩散方程的非对称和对称无网格方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate the application of unsymmetric and symmetric meshless collocation techniques with radial basis functions for solving the unsteady convection-diffusion equation. We employ the method of lines approach to discretize the governing operator equation. The stability of both explicit and implicit time-stepping schemes are analyzed. Numerical results are presented for 1D and 2D problems to compare the performance of the unsymmetric and symmetric collocation techniques. We compare the performance of various globally supported radial basis functions such as multiquadric, inverse multiquadric, Gaussian, thin plate splines and quintics. Numerical studies suggest that symmetric collocation is only marginally better than the unsymmetric approach. Further, it appears that both collocation techniques require a very dense set of collocation points in order to achieve accurate results for high Peclet numbers.
机译:在本文中,我们研究了具有径向基函数的非对称和对称无网格搭配技术在求解非稳态对流扩散方程中的应用。我们采用线法来离散控制算子方程。分析了显式和隐式时间步长方案的稳定性。给出了针对一维和二维问题的数值结果,以比较非对称和对称配置技术的性能。我们比较了各种全球支持的径向基函数的性能,例如多二次方,反二次方,高斯,薄板样条和五次方。数值研究表明,对称配置仅比不对称方法略胜一筹。此外,似乎两种配置技术都需要非常密集的一组配置点,以便获得高Peclet数的准确结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号