首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An Efficient Framework For Optimal Robust Stochastic System Design Using Stochastic Simulation
【24h】

An Efficient Framework For Optimal Robust Stochastic System Design Using Stochastic Simulation

机译:使用随机模拟的最优鲁棒随机系统设计的有效框架

获取原文
获取原文并翻译 | 示例

摘要

The knowledge about a planned system in engineering design applications is never complete. Often, a probabilistic quantification of the uncertainty arising from this missing information is warranted in order to efficiently incorporate our partial knowledge about the system and its environment into their respective models. This leads to a robust stochastic design framework where probabilistic models of excitation uncertainties and system modeling uncertainties can be introduced; the design objective is then typically related to the expected value of a system performance measure, such as reliability or expected life-cycle cost. For complex system models, this expected value can rarely be evaluated analytically and so it is often calculated using stochastic simulation techniques, which involve an estimation error and significant computational cost. An efficient framework, consisting of two stages, is presented here for the optimization in such robust stochastic design problems. The first stage implements a novel approach, called stochastic subset optimization (SSO), for iteratively identifying a subset of the original design space that has high plausibility of containing the optimal design variables. The second stage adopts some other stochastic optimization algorithm to pinpoint the optimal design variables within that subset. The focus is primarily on the theory and implementation issues for SSO but also on topics related to the combination of the two different stages for overall enhanced efficiency. An illustrative example is presented that shows the efficiency of the proposed methodology; it considers the optimization of the reliability of a base-isolated structure considering future near-fault ground motions.
机译:在工程设计应用程序中有关计划系统的知识永远是不完整的。通常,需要对由于缺少信息而引起的不确定性进行概率量化,以便将我们对系统及其环境的部分知识有效地纳入各自的模型中。这导致了一个鲁棒的随机设计框架,其中可以引入激励不确定性和系统建模不确定性的概率模型;然后,设计目标通常与系统性能指标的预期值有关,例如可靠性或预期的生命周期成本。对于复杂的系统模型,此期望值很少可以通过分析来评估,因此通常使用随机仿真技术进行计算,这会带来估计误差和大量的计算成本。这里提出了一个由两个阶段组成的有效框架,用于优化此类健壮的随机设计问题。第一个阶段实现一种称为随机子集优化(SSO)的新颖方法,用于迭代地标识原始设计空间的一个子集,该子集具有较高的合理性,可以包含最佳设计变量。第二阶段采用其他一些随机优化算法来确定该子集中的最佳设计变量。重点主要放在SSO的理论和实施问题上,也集中在与两个不同阶段的组合相关的主题上,以提高整体效率。给出了一个说明性示例,说明了所提出方法的效率。考虑未来的近断层地震动,它考虑了对基础隔震结构可靠性的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号