首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method
【24h】

A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

机译:介观的流体桥接尺度方法和耗散颗粒动力学与连续有限元方法的耦合

获取原文
获取原文并翻译 | 示例

摘要

A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249-274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier-Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples - simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method.
机译:提出了一种中尺度离散粒子模型和不可压缩流体流动的宏观尺度连续模型耦合的多尺度程序。我们将此程序称为介观桥接尺度(MBS)方法,因为它是基于耦合分子动力学和有限元模型的桥接尺度方法开发的。瓦格纳(Wagner) Liu,使用桥接尺度分解的原子模拟和连续模拟的耦合,J.Comput。物理190(2003)249-274]。我们推导了MBS方法的控制方程,并表明中尺度离散粒子模型和有限元(FE)模型的运动微分方程仅通过力项耦合。基于这种耦合,我们表达了依赖于Navier-Stokes和连续性方程的有限元方程,其中内部节点有限元力是使用中尺度模型的粘性应力来评估的。采用离散粒子介观模型的耗散粒子动力学(DPD)方法。整个流体域分为局部域和全局域。使用DPD和FE方法对局部域中的流体流动进行建模,而仅使用FE方法对全局域中的流体流动进行建模。 MBS方法适合于建模复杂的(胶体)流体流,其中连续谱方法仅在大流体域中才足够准确,而特别关注的局部小区域则需要通过介观离散颗粒进行详细建模。解决的示例-简单的Poiseuille和从动腔流动说明了所提出的MBS方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号