首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Linking Microstructure And Properties Through A Predictive multiresolution Continuum
【24h】

Linking Microstructure And Properties Through A Predictive multiresolution Continuum

机译:通过可预测的多分辨率连续体链接微观结构和特性

获取原文
获取原文并翻译 | 示例

摘要

Under the sponsorship of the NSF/Sandia Life Cycle Science-based Engineering Program, the Sandia Predictive Science Program, and the ONR Digital 3D (D3D) program, a multiresolution continuum theory [C. McVeigh, F. Vernerey, W.K. Liu, L.C. Brinson, Com put. Methods Appl. Mech. Engrg. 195 (2006) 5053] is developed to predict material response when spatial and temporal microstructure evolution gives rise to severely inhomogeneous deformation at multiple scales. The proposed theory is applied by concurrently homogenizing the microstructure at each characteristic length scale associated with the inhomogeneous response. A continuum-micro structure work rate equivalence approach is used to develop a set of continuum partial differential governing equations, in terms of multiresolution microstresses (and couple microstresses). Constitutive models relating to each microstress are determined from numerical microstructure models. The multiresolution governing equations can be solved with a conventional finite element approach. Hence numerical and modeling errors analyses, probabilistic and reliability analyses and petaflop computing can be considered using existing approaches (or with transparent modifications). When only a single scale of inhomogeneous deformation (at the scale of the RVE) is considered, the multiresolution theory decomposes to the strain gradient theory of Fleck and Hutchinson. The theory is applied to (ⅰ) an alloy with two scales of statistically embedded particles, (ⅱ) a cemented carbide and (ⅲ) adiabatic shear banding in steel alloys. Only the mean constitutive behavior is considered at each scale; the full probabilistic analysis will be presented in a separate paper.
机译:在基于NSF / Sandia生命周期科学的工程计划,Sandia预测科学计划和ONR数字3D(D3D)计划的赞助下,多分辨率连续体理论[C.麦维(F.Vernerey),W.K。刘LCC布林森,康普。方法应用。机甲gr 195(2006)5053]的开发是为了预测当空间和时间的微观结构演变引起多尺度严重不均匀变形时的材料响应。通过同时均化与不均匀响应相关的每个特征长度尺度上的微观结构来应用所提出的理论。根据多分辨率微应力(和耦合微应力),使用连续体-微结构工作速率当量方法来开发一组连续体偏微分控制方程。由数值微观结构模型确定与每个微观应力有关的本构模型。可以使用常规的有限元方法求解多分辨率控制方程。因此,可以使用现有方法(或进行透明修改)考虑数值和建模误差分析,概率和可靠性分析以及petaflop计算。当仅考虑单个尺度的非均匀变形(以RVE尺度)时,多分辨率理论分解为Fleck和Hutchinson的应变梯度理论。该理论适用于(ⅰ)具有两种比例的统计嵌入颗粒的合金,(ⅱ)硬质合金和(ⅲ)合金钢中的绝热剪切带。在每个尺度上仅考虑平均本构行为。完整的概率分析将在另一篇论文中介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号