首页> 外文学位 >Linking properties to microstructure through multiresolution mechanics.
【24h】

Linking properties to microstructure through multiresolution mechanics.

机译:通过多分辨率机制将特性链接到微观结构。

获取原文
获取原文并翻译 | 示例

摘要

The macroscale mechanical and physical properties of materials are inherently linked to the underlying microstructure. Traditional continuum mechanics theories have focused on approximating the heterogeneous microstructure as a continuum, which is conducive to a partial differential equation mathematical description. Although this makes large scale simulation of material much more efficient than modeling the detailed microstructure, the relationship between microstructure and macroscale properties becomes unclear. In order to perform computational materials design, material models must clearly relate the key underlying microstructural parameters (cause) to macroscale properties (effect).; In this thesis, microstructure evolution and instability events are related to macroscale mechanical properties through a new multiresolution continuum analysis approach. The multiresolution nature of this theory allows prediction of the evolving magnitude and scale of deformation as a direct function of the changing microstructure. This is achieved via a two-pronged approach: (a) Constitutive models which track evolving microstructure are developed and calibrated to direct numerical simulations (DNS) of the microstructure. (b) The conventional homogenized continuum equations of motion are extended via a virtual power approach to include extra coupled microscale stresses and stress couples which are active at each characteristic length scale within the microstructure.; The multiresolution approach is applied to model the fracture toughness of a cemented carbide, failure of a steel alloy under quasi-static loading conditions and the initiation and velocity of adiabatic shear bands under high speed dynamic loading. In each case the multiresolution analysis predicts the important scale effects which control the macroscale material response. The strain fields predicted in the multiresolution continuum analyses compare well to those observed in direct numerical simulations of the microstructure. However much less computational effort is required because the detailed microstructure does not have to be modeled (unlike the direct numerical simulations). Furthermore the characteristic length scale of inhomogeneous deformation is predicted to change as a function of the evolving microstructure. As such the predicted scale of inhomogeneous deformation which controls the macroscale response is a function of the underlying microstructural instability events. This provides an important link between macroscale properties and microstructure which is useful for materials design.
机译:材料的宏观机械和物理特性固有地与下面的微观结构相关。传统的连续体力学理论集中于将异质微观结构近似为连续体,这有利于偏微分方程的数学描述。尽管这使得对材料进行大规模模拟比对详细的微观结构建模要有效得多,但微观结构与宏观性能之间的关系仍不清楚。为了进行计算材料设计,材料模型必须清楚地将关键的微观结构参数(原因)与宏观性质(效果)联系起来。本文通过一种新的多分辨率连续分析方法,研究了微观结构的演化和不稳定性事件与宏观力学性能的关系。该理论的多分辨率性质允许预测变形的演变幅度和规模,作为变化的微结构的直接函数。这可以通过两方面的方法来实现:(a)建立并跟踪不断发展的微观结构的本构模型,并对其进行校准,以指导微观结构的数值模拟(DNS)。 (b)通过虚拟功率方法扩展了传统的均质连续运动方程,以包括额外的耦合微观尺度应力和在微观结构内每个特征长度尺度上均有效的应力偶。应用多分辨率方法对硬质合金的断裂韧性,准静态载荷条件下的钢合金破坏以及高速动态载荷下的绝热剪切带的起始和速度进行建模。在每种情况下,多分辨率分析都可预测控制宏观材料响应的重要尺度效应。在多分辨率连续体分析中预测的应变场与在微观结构的直接数值模拟中观察到的应变场相比较很好。但是,由于不必对详细的微观结构进行建模(与直接数值模拟不同),因此所需的计算工作量就少得多。此外,不均匀变形的特征长度尺度被预测会随着演化的微观结构而变化。因此,控制宏观尺度响应的不均匀变形的预测尺度是潜在的微观结构不稳定性事件的函数。这提供了宏观性能和微观结构之间的重要联系,这对材料设计很有用。

著录项

  • 作者

    McVeigh, Cahal James.;

  • 作者单位

    Northwestern University.$bMechanical Engineering.;

  • 授予单位 Northwestern University.$bMechanical Engineering.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 357 p.
  • 总页数 357
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号