首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A novel multi-objective optimization method based on an approximation model management technique
【24h】

A novel multi-objective optimization method based on an approximation model management technique

机译:一种基于近似模型管理技术的多目标优化方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel multi-objective optimization method is suggested based on an approximation model management technique. It is a sequential approximation method, in which a multi-objective optimization with approximation models subject to design variable move limits is iterated until convergence. In each iteration step, the approximation models are constructed by the response surface approximations with the samples which are obtained from the design of experiments, and a Pareto optimal set predicted by the approximations is identified through a multi-objective genetic algorithm. According to the prediction of the approximation models, a move limits updating strategy is employed to determine the design variable move limits for the next iteration. At the end of each iteration step, some uniform distributed points chosen from the predictive Pareto optimal frontier are verified by the high fidelity models and the obtained actual Pareto optimal set is stored in an external archive. The high efficiency of the present method is demonstrated by four different test functions and two engineering applications.
机译:本文提出了一种基于近似模型管理技术的多目标优化方法。这是一种顺序逼近方法,其中对具有受设计变量移动限制的逼近模型的多目标优化进行迭代,直到收敛为止。在每个迭代步骤中,通过从实验设计中获得的样本与响应表面近似值构建近似模型,并通过多目标遗传算法识别近似值预测的帕累托最优集。根据近似模型的预测,采用运动极限更新策略来确定下一次迭代的设计变量运动极限。在每个迭代步骤的末尾,通过高保真度模型验证从预测帕累托最优边界中选择的一些均匀分布点,并将获得的实际帕累托最优集合存储在外部档案中。通过四种不同的测试功能和两种工程应用,证明了本方法的高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号