首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On The Relationship Of Local Projection Stabilization To Other Stabilized Methods For One-dimensional Advection-diffusion Equations
【24h】

On The Relationship Of Local Projection Stabilization To Other Stabilized Methods For One-dimensional Advection-diffusion Equations

机译:一维对流扩散方程的局部投影稳定与其他稳定方法的关系

获取原文
获取原文并翻译 | 示例

摘要

We consider the one-level approach of the local projection stabilization (LPS) for solving a singularly perturbed advection-diffusion two-point boundary value problem. Eliminating the enrichments we end up with the differentiated residual method (DRM) which coincides for piecewise linears with the streamline upwind Petrov-Galerkin (SUPG) method and for piecewise polynomials of degree r ≥ 2 with the varia-tional multiscale method (VMS). Furthermore, we show that in certain cases the stabilization parameter can be chosen in such a way that the piecewise linear part of the solution becomes nodal exact. In this way, we obtain explicit formulas for the stabilization parameter depending on the local meshsize, the polynomial degree r of the approximation space, and the data of the problem. Finally, we discuss the behaviour of different modes of the discrete solution when varying the stabilization parameter.
机译:我们考虑采用局部投影稳定化(LPS)的一种方法来解决奇摄动对流扩散两点边值问题。消除富集,我们最终得到了微分残差法(DRM),该差分残差法与流线型迎风Petrov-Galerkin(SUPG)方法的分段线性一致,而r≥2的分段多项式与变分多尺度方法(VMS)一致。此外,我们表明,在某些情况下,可以通过以下方式选择稳定参数:解决方案的分段线性部分变得精确到节点。这样,我们就可以根据局部网格大小,近似空间的多项式r和问题数据来获得稳定参数的明确公式。最后,我们讨论了改变稳定参数时离散模式不同模式的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号