首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Geometrically non-linear behavior of structural systems with random material property: An asymptotic spectral stochastic approach
【24h】

Geometrically non-linear behavior of structural systems with random material property: An asymptotic spectral stochastic approach

机译:具有随机材料特性的结构系统的几何非线性行为:渐近谱随机方法

获取原文
获取原文并翻译 | 示例

摘要

An asymptotic spectral stochastic approach is presented for computing the statistics of the equilibrium path in the post-bifurcation regime for structural systems with random material properties. The approach combines numerical implementation of Koiter's asymptotic theory with a stochastic Galerkin scheme and collocation in stochastic space to quantify uncertainties in the parametric representation of the load-displacement relationship, specifically in the form of uncertain post-buckling slope, post-buckling curvature, and a family of stochastic displacement fields. Using the proposed method, post-buckling response statistics for two plane frames are obtained and shown to be in close agreement with those obtained from Monte Carlo simulation, provided a fine enough spectral representation is used to model the variability in the random dimension.
机译:提出了一种渐近谱随机方法,用于计算具有随机材料特性的结构系统在分叉后状态下的平衡路径统计量。该方法将Koiter渐近理论的数值实现与随机Galerkin方案和随机空间中的搭配相结合,以量化载荷-位移关系的参数表示形式中的不确定性,特别是以不确定的屈曲后斜率,屈曲后曲率和一族随机位移场。使用所提出的方法,获得了两个平面框架的屈曲后响应统计量,并显示出与从蒙特卡洛模拟获得的屈曲后响应统计量非常一致,条件是使用足够精细的频谱表示法来建模随机维中的变异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号